首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mechanical deformation of normal ATP-replete human erythrocytes increased their permeability to Ca2+ sufficiently to turn on the Ca(2+)-activated K+ channel (the Gardos channel). When Ca2+ is absent, mechanical deformation of normal erythrocytes induces an equivalent increase the permeability of both Na+ and K+, In the presence of 0.1 to 1 mM Ca2+, a further increase in the K+ efflux rate was seen. There was no increase in Na+ flux above that induced by deformation itself. The involvement of the Ca(2+)-activated H channel was verified by showing the specific inhibitors of the channel, quinine and charybdotoxin, prevent the Ca(2+)-induced increase in K+ efflux. These results are consistent with a model of sickle cell dehydration proposed by Bookchin et al. ((1987) Prog. Clin. Biol. Res. 240, 193-200). The estimated rate of Ca2+ entry under these conditions (37 degrees C, 1000 dyne/cm2, and laminar shear) was about 1 mmol/loc per h.  相似文献   

3.
4.
Ha TS  Heo MS  Park CS 《Biophysical journal》2004,86(5):2871-2882
Large-conductance calcium-activated potassium (BK(Ca)) channels are composed of the pore-forming alpha-subunit and the auxiliary beta-subunits. The beta4-subunit is dominantly expressed in the mammalian central nervous system. To understand the physiological roles of the beta4-subunit on the BK(Ca) channel alpha-subunit (Slo), we isolated a full-length complementary DNA of rat beta4-subunit (rbeta4), expressed heterolgously in Xenopus oocytes, and investigated the detailed functional effects using electrophysiological means. When expressed together with rat Slo (rSlo), rbeta4 profoundly altered the gating characteristics of the Slo channel. At a given concentration of intracellular Ca(2+), rSlo/rbeta4 channels were more sensitive to transmembrane voltage changes. The activation and deactivation rates of macroscopic currents were decreased in a Ca(2+)-dependent manner. The channel activation by Ca(2+) became more cooperative by the coexpression of rbeta4. Single-channel recordings showed that the increased Hill coefficient for Ca(2+) was due to the changes in the open probability of the rSlo/rbeta4 channel. Single BK(Ca) channels composed of rSlo and rbeta4 also exhibited slower kinetics for steady-state gating compared with rSlo channels. Dwell times of both open and closed events were significantly increased. Because BK(Ca) channels are known to modulate neuroexcitability and the expression of the beta4-subunit is highly concentrated in certain subregions of brain, the electrophysiological properties of individual neurons should be affected profoundly by the expression of this second subunit.  相似文献   

5.
C Miller 《Neuron》1988,1(10):1003-1006
Single high-conductance Ca2(+)-activated K+ channels were incorporated into planar lipid bilayers, and the discrete block by charybdotoxin (CTX), a protein inhibitor of this channel, was studied. In particular, the effect of externally added tetraethylammonium (TEA) on CTX blocking kinetics was investigated. TEA decreases the on-rate of CTX in exact proportion to its blocking of the single-channel current. The CTX off-rate is unaffected by TEA. The results demonstrate that TEA and CTX are mutually exclusive in their binding to the channel. Since the site of TEA binding is known to be located on the external side of the conduction pore, this result further strengthens the proposal that the CTX binding site is located in the external mouth of the channel.  相似文献   

6.
Nitrendipine, a classical blocker of L-type Ca2+ channels, is shown to be a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. In erythrocytes suspended in a solution with physiological Na+ and K+ concentrations and in which the channel was activated using the Ca2+ ionophore ionomycin, nitrendipine inhibited K+(86Rb+) influx with an I50 of around 130 nM. Similar results were obtained for K+(86Rb+) efflux, and for K+(86Rb+) influx into cells suspended in a high-K+ medium.  相似文献   

7.
Modulation of the cloned human intermediate-conductance Ca(2+)-activated K(+) channel (hIK) by the compound 1-ethyl-2-benzimidazolinone (EBIO) was studied by patch-clamp technique using human embryonic kidney cells (HEK 293) stably expressing the hIK channels. In whole-cell studies, intracellular concentrations of free Ca(2+) were systematically varied, by buffering the pipette solutions. In voltage-clamp, the hIK specific currents increased gradually from 0 to approximately 300 pA/pF without reaching saturation even at the highest Ca(2+) concentration tested (300 nM). In the presence of EBIO (100 microM), the Ca(2+)-activation curve was shifted leftwards, and maximal currents were attained at 100 nM Ca(2+). In current-clamp, steeply Ca(2+)-dependent membrane potentials were recorded and the cells gradually hyperpolarised from -20 to -85 mV when Ca(2+) was augmented from 0 to 300 nM. EBIO strongly hyperpolarised cells buffered at intermediate Ca(2+) concentrations. In contrast, no effects were detected either below 10 nM (no basic channel activation) or at 300 nM Ca(2+) (V(m) close to E(K)). Without Ca(2+), EBIO-induced hyperpolarisations were not obtainable, indicating an obligatory Ca(2+)-dependent mechanism of action. When applied to inside-out patches, EBIO exerted a Ca(2+)-dependent increase in the single-channel open-state probability, showing that the compound modulates hIK channels by a direct action on the alpha-subunit or on a closely associated protein. In conclusion, EBIO activates hIK channels in whole-cell and inside-out patches by a direct mechanism, which requires the presence of internal Ca(2+).  相似文献   

8.
ATP inhibits smooth muscle Ca2(+)-activated K+ channels   总被引:3,自引:0,他引:3  
There has been much recent interest in the roles played by smooth-muscle K+ channels in protecting cells against ischemic and anoxic insults and in therapeutic vaso- and bronchodilation (Buckingham 1990; Longmore & Weston 1990). A K+ channel, which is uniquely sensitive to cytoplasmic ATP (KATP), has been identified as a likely candidate for mediating these important functions (Standen et al. 1989). We now show, by using electrophysiological techniques in three different types of smooth muscle, that a large-conductance voltage and Ca2(+)-sensitive channel, otherwise indistinguishable from the the large-conductance Ca2(+)-activated K+ channel (BK channel), is also sensitive to cytoplasmic ATP and cromakalim. ATP, in a dose-dependent manner, decreased the probability of channel opening (Po) of rabbit aortic, rabbit tracheal and pig coronary artery BK channels with a Ki of 0.2-0.6 mM. Cromakalim, 10 microM, partially reversed the ATP induced inhibition and increased Po. Our observations raise the possibility that the ubiquitous BK channel may play a role during pathophysiological events.  相似文献   

9.
Coexpression of the beta(1) subunit with the alpha subunit (mSlo) of BK channels increases the apparent Ca(2+) sensitivity of the channel. This study investigates whether the mechanism underlying the increased Ca(2+) sensitivity requires Ca(2+), by comparing the gating in 0 Ca(2+)(i) of BK channels composed of alpha subunits to those composed of alpha+beta(1) subunits. The beta(1) subunit increased burst duration approximately 20-fold and the duration of gaps between bursts approximately 3-fold, giving an approximately 10-fold increase in open probability (P(o)) in 0 Ca(2+)(i). The effect of the beta(1) subunit on increasing burst duration was little changed over a wide range of P(o) achieved by varying either Ca(2+)(i) or depolarization. The effect of the beta(1) subunit on increasing the durations of the gaps between bursts in 0 Ca(2+)(i) was preserved over a range of voltage, but was switched off as Ca(2+)(i) was increased into the activation range. The Ca(2+)-independent, beta(1) subunit-induced increase in burst duration accounted for 80% of the leftward shift in the P(o) vs. Ca(2+)(i) curve that reflects the increased Ca(2+) sensitivity induced by the beta(1) subunit. The Ca(2+)-dependent effect of the beta(1) subunit on the gaps between bursts accounted for the remaining 20% of the leftward shift. Our observation that the major effects of the beta(1) subunit are independent of Ca(2+)(i) suggests that the beta(1) subunit mainly alters the energy barriers of Ca(2+)-independent transitions. The changes in gating induced by the beta(1) subunit differ from those induced by depolarization, as increasing P(o) by depolarization or by the beta(1) subunit gave different gating kinetics. The complex gating kinetics for both alpha and alpha+beta(1) channels in 0 Ca(2+)(i) arise from transitions among two to three open and three to five closed states and are inconsistent with Monod-Wyman-Changeux type models, which predict gating among only one open and one closed state in 0 Ca(2+)(i).  相似文献   

10.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

11.
Using the patch-clamp technique, we demonstrate that, in depolarized cell-attached patches from mouse skeletal muscle fibers, a short hyperpolarization to resting value is followed by a transient activation of Ca(2+)-activated K(+) channels (K(Ca)) upon return to depolarized levels. These results indicate that sparse sites of passive Ca(2+) influx at resting potentials are responsible for a subsarcolemmal Ca(2+) load high enough to induce K(Ca) channel activation upon muscle activation. We then investigate this phenomenon in mdx dystrophin-deficient muscle fibers, in which an elevated Ca(2+) influx and a subsequent subsarcolemmal Ca(2+) overload are suspected. The number of Ca(2+) entry sites detected with K(Ca) was found to be greater in mdx muscle. K(Ca) activity reflecting subsarcolemmal Ca(2+) load was also found to be independent of the activity of leak channels carrying inward currents at negative potentials in mdx muscle. These results indicate that the sites of passive Ca(2+) influx newly described in this study could represent the Ca(2+) influx pathways responsible for the subsarcolemmal Ca(2+) overload in mdx muscle fibers.  相似文献   

12.
Over the past few years, it has become clear that an important mechanism by which large-conductance Ca2+-activated K+ channel (BKCa) activity is regulated is the tissue-specific expression of auxiliary β subunits. The first of these to be identified, β1, is expressed predominately in smooth muscle and causes dramatic effects, increasing the apparent affinity of the channel for Ca2+ 10-fold at 0 mV, and shifting the range of voltages over which the channel activates −80 mV at 9.1 μM Ca2+. With this study, we address the question: which aspects of BKCa gating are altered by β1 to bring about these effects: Ca2+ binding, voltage sensing, or the intrinsic energetics of channel opening? The approach we have taken is to express the β1 subunit together with the BKCa α subunit in Xenopus oocytes, and then to compare β1''s steady state effects over a wide range of Ca2+ concentrations and membrane voltages to those predicted by allosteric models whose parameters have been altered to mimic changes in the aspects of gating listed above. The results of our analysis suggest that much of β1''s steady state effects can be accounted for by a reduction in the intrinsic energy the channel must overcome to open and a decrease in its voltage sensitivity, with little change in the affinity of the channel for Ca2+ when it is either open or closed. Interestingly, however, the small changes in Ca2+ binding affinity suggested by our analysis (Kc 7.4 μM → 9.6 μM; Ko = 0.80 μM → 0.65 μM) do appear to be functionally important. We also show that β1 affects the mSlo conductance–voltage relation in the essential absence of Ca2+, shifting it +20 mV and reducing its apparent gating charge 38%, and we develop methods for distinguishing between alterations in Ca2+ binding and other aspects of BKCa channel gating that may be of general use.  相似文献   

13.
We studied the effect of H(2)O(2) on the gating behavior of large-conductance Ca(2+)-sensitive voltage-dependent K(+) (K(V,Ca)) channels. We recorded potassium currents from single skeletal muscle channels incorporated into bilayers or using macropatches of Xenopus laevis oocytes membranes expressing the human Slowpoke (hSlo) alpha-subunit. Exposure of the intracellular side of K(V,Ca) channels to H(2)O(2) (4-23 mM) leads to a time-dependent decrease of the open probability (P(o)) without affecting the unitary conductance. H(2)O(2) did not affect channel activity when added to the extracellular side. These results provide evidence for an intracellular site(s) of H(2)O(2) action. Desferrioxamine (60 microM) and cysteine (1 mM) completely inhibited the effect of H(2)O(2), indicating that the decrease in P(o) was mediated by hydroxyl radicals. The reducing agent dithiothreitol (DTT) could not fully reverse the effect of H(2)O(2). However, DTT did completely reverse the decrease in P(o) induced by the oxidizing agent 5,5'-dithio-bis-(2-nitrobenzoic acid). The incomplete recovery of K(V,Ca) channel activity promoted by DTT suggests that H(2)O(2) treatment must be modifying other amino acid residues, e.g., as methionine or tryptophan, besides cysteine. Noise analysis of macroscopic currents in Xenopus oocytes expressing hSlo channels showed that H(2)O(2) induced a decrease in current mediated by a decrease both in the number of active channels and P(o).  相似文献   

14.
We previouslycharacterized 1-ethyl-2-benzimidazolinone (1-EBIO), as well as theclinically useful benzoxazoles, chlorzoxazone (CZ), and zoxazolamine(ZOX), as pharmacological activators of the intermediate-conductanceCa2+-activated K+ channel, hIK1. The mechanismof activation of hIK1, as well as the highly homologoussmall-conductance, Ca2+-dependent K+ channel,rSK2, was determined following heterologous expression inXenopus oocytes using two-electrode voltage clamp (TEVC) and excised, inside-out patch-clamp techniques. 1-EBIO, CZ, and ZOX activated both hIK1 and rSK2 in TEVC and excised inside-out patch-clamp experiments. In excised, inside-out patches, 1-EBIO and CZ induced aconcentration-dependent activation of hIK1, with half-maximal (K1/2) values of 84 µM and 98 µM, respectively.Similarly, CZ activated rSK2 with a K1/2 of 87 µM. In the absence of CZ, the Ca2+-dependent activationof hIK1 was best fit with a K1/2 of 700 nM and aHill coefficient (n) of 2.0. rSK2 was activated byCa2+ with a K1/2 of 700 nM and ann of 2.5. Addition of CZ had no effect on either theK1/2 or n for Ca2+-dependentactivation of either hIK1 or rSK2. Rather, CZ increased channelactivity at all Ca2+ concentrations(Vmax). Event-duration analysis revealed hIK1 wasminimally described by two open and three closed times. Activation by1-EBIO had no effect on o1, o2, orc1, whereas c2 and c3 werereduced from 9.0 and 92.6 ms to 5.0 and 44.1 ms, respectively. Inconclusion, we define 1-EBIO, CZ, and ZOX as the first known activatorsof hIK1 and rSK2. Openers of IK and SK channels may be therapeuticallybeneficial in cystic fibrosis and vascular diseases.

  相似文献   

15.
T cell receptor engagement results in the reorganization of intracellular and membrane proteins at the T cell-antigen presenting cell interface forming the immunological synapse (IS), an event required for Ca2+ influx. KCa3.1 channels modulate Ca2+ signaling in activated T cells by regulating the membrane potential. Nothing is known regarding KCa3.1 membrane distribution during T cell activation. Herein, we determined whether KCa3.1 translocates to the IS in human T cells using YFP-tagged KCa3.1 channels. These channels showed electrophysiological and pharmacological properties identical to wild-type channels. IS formation was induced by either anti-CD3/CD28 antibody-coated beads for fixed microscopy experiments or Epstein-Barr virus-infected B cells for fixed and live cell microscopy. In fixed microscopy experiments, T cells were also immunolabeled for F-actin or CD3, which served as IS formation markers. The distribution of KCa3.1 was determined with confocal and fluorescence microscopy. We found that, upon T cell activation, KCa3.1 channels localize with F-actin and CD3 to the IS but remain evenly distributed on the cell membrane when no stimulus is provided. Detailed imaging experiments indicated that KCa3.1 channels are recruited in the IS shortly after antigen presentation and are maintained there for at least 15–30 min. Interestingly, pretreatment of activated T cells with the specific KCa3.1 blocker TRAM-34 blocked Ca2+ influx, but channel redistribution to the IS was not prevented. These results indicate that KCa3.1 channels are a part of the signaling complex that forms at the IS upon antigen presentation. T cell activation; ion channels; membrane distribution  相似文献   

16.
Fluorescent ryanodine revealed the distribution of ryanodine receptors in the submembrane cytoplasm (less than a few micrometers) of cultured bullfrog sympathetic ganglion cells. Rises in cytosolic Ca(2+) ([Ca(2+)](i)) elicited by single or repetitive action potentials (APs) propagated at a high speed (150 microm/s) in constant amplitude and rate of rise in the cytoplasm bearing ryanodine receptors, and then in the slower, waning manner in the deeper region. Ryanodine (10 microM), a ryanodine receptor blocker (and/or a half opener), or thapsigargin (1-2 microM), a Ca(2+)-pump blocker, or omega-conotoxin GVIA (omega-CgTx, 1 microM), a N-type Ca(2+) channel blocker, blocked the fast propagation, but did not affect the slower spread. Ca(2+) entry thus triggered the regenerative activation of Ca(2+)-induced Ca(2+) release (CICR) in the submembrane region, followed by buffered Ca(2+) diffusion in the deeper cytoplasm. Computer simulation assuming Ca(2+) release in the submembrane region reproduced the Ca(2+) dynamics. Ryanodine or thapsigargin decreased the rate of spike repolarization of an AP to 80%, but not in the presence of iberiotoxin (IbTx, 100 nM), a BK-type Ca(2+)-activated K(+) channel blocker, or omega-CgTx, both of which decreased the rate to 50%. The spike repolarization rate and the amplitude of a single AP-induced rise in [Ca(2+)](i) gradually decreased to a plateau during repetition of APs at 50 Hz, but reduced less in the presence of ryanodine or thapsigargin. The amplitude of each of the [Ca(2+)](i) rise correlated well with the reduction in the IbTx-sensitive component of spike repolarization. The apamin-sensitive SK-type Ca(2+)-activated K(+) current, underlying the afterhyperpolarization of APs, increased during repetitive APs, decayed faster than the accompanying rise in [Ca(2+)](i), and was suppressed by CICR blockers. Thus, ryanodine receptors form a functional triad with N-type Ca(2+) channels and BK channels, and a loose coupling with SK channels in bullfrog sympathetic neurons, plastically modulating AP.  相似文献   

17.
Cao Y  Zhang SZ  Zhao SQ  Bruce IC 《Life sciences》2011,88(23-24):1026-1030
AimsTo investigate the role of the mitochondrial Ca2+-activated K+ channel in cardioprotection induced by limb remote ischemic preconditioning.Main methodsMale Sprague–Dawley rats (250–300 g) were randomized into control, ischemia/reperfusion (I/R), remote ischemic preconditioning (RPC), NS1619 (a specific mitochondrial Ca2+-activated K+ channel opener), and RPC + paxilline (a specific mitochondrial Ca2+-activated K+ channel inhibitor) groups. RPC was induced by 4 cycles of 5 min of ligation followed by 5 min of reperfusion of the left femoral artery. Myocardial I/R was achieved by ligation of the left anterior descending coronary artery for 30 min, followed by 120 min of reperfusion. Infarct size was determined by 2,3,5-triphenyltetrazolium chloride staining, the hemodynamics were monitored, and lactate dehydrogenase (LDH) levels in the coronary effluent, manganese superoxide dismutase (Mn-SOD) content in mitochondria and mitochondrial membrane potential were measured spectrophotometrically. The ultrastructure of cardiomyocyte mitochondria was assessed by electron microscopy.Key findingsNS1619 (10 μM) improved heart function, decreased infarct size, reduced LDH release, maintained mitochondrial structural integrity and mitochondrial membrane potential, and increased the mitochondrial content of Mn-SOD to the same degree as RPC treatment. However, paxilline (1 μM) eliminated the cardioprotective effect conferred by RPC.SignificanceThe mitochondrial Ca2+-activated K+ channel participates in the myocardial protection by limb remote ischemic preconditioning.  相似文献   

18.
High-conductanceCa2+-activatedK+(KCa) channels werestudied in mouse skeletal muscle fibers using thepatch-clamp technique. In inside-out patches, application of negativepressure to the patch induced a dose-dependent and reversibleactivation of KCa channels.Stretch-induced increase in channel activity was found to be of thesame magnitude in the presence and in the absence ofCa2+ in the pipette. Thedose-response relationships betweenKCa channel activity andintracellular Ca2+ and betweenKCa channel activity and membranepotential revealed that voltage andCa2+ sensitivity were not alteredby membrane stretch. In cell-attached patches, in the presence of highexternal Ca2+ concentration,stretch-induced activation was also observed. We conclude that membranestretch is a potential mode of regulation of skeletal muscleKCa channel activity and could beinvolved in the regulation of muscle excitability duringcontraction-relaxation cycles.

  相似文献   

19.
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR)Ca2+-ATPase, and this inhibition is relieved bycAMP-dependent protein kinase (PKA)-mediated phosphorylation. The roleof PLB in regulating Ca2+ release throughryanodine-sensitive Ca2+ release channels, measured asCa2+ sparks, was examined using smooth muscle cells ofcerebral arteries from PLB-deficient ("knockout") mice(PLB-KO). Ca2+ sparks were monitored opticallyusing the fluorescent Ca2+ indicator fluo 3 or electricallyby measuring transient large-conductance Ca2+-activatedK+ (BK) channel currents activated by Ca2+sparks. Basal Ca2+ spark and transient BK current frequencywere elevated in cerebral artery myocytes of PLB-KO mice. Forskolin, anactivator of adenylyl cyclase, increased the frequency ofCa2+ sparks and transient BK currents in cerebral arteriesfrom control mice. However, forskolin had little effect on thefrequency of Ca2+ sparks and transient BK currents fromPLB-KO cerebral arteries. Forskolin or PLB-KO increased SRCa2+ load, as measured by caffeine-induced Ca2+transients. This study provides the first evidence that PLB is criticalfor frequency modulation of Ca2+ sparks and associated BKcurrents by PKA in smooth muscle.

  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号