首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
酶学研究的现状与展望   总被引:5,自引:0,他引:5  
1分子酶学1.1结构研究截至1999年1月在Brookhavenproteindatabank中已有的8000多个结构中,有4800个是酶的结构,其中绝大部分是晶体结构,但用NMR方法解出的结构正在迅速增长.多标记和多维技术的发展使得用NMR方法解出...  相似文献   

2.
Enzyme stabilization is one of the most important fields in basic and applied enzymology. In basic enzymology, it is of particular relevance to understand enzyme stabilization principles first elucidating how and why the enzymes lose their biological activity and then deriving structure-stability relationships existing in enzymatic molecules. In applied enzymology, the most significant goal is to achieve useful compounds by biocatalysis. Enzymes are good catalysts in terms of high catalytic and specific activity with ability to function under mild conditions. However, they are not always ideal catalysts for practical applications because they are generally unstable and they inactivate rapidly through several mechanisms. In order to enhance enzyme stability, many strategies have been pursued in recent years. The present article is an attempt to provide detailed information about these strategies.  相似文献   

3.
This review discusses the analytical applications of monoclonal antibodies specific for enzymes. One important, but not well-studied, application of these monoclonal antibodies is their use in immobilizing enzymes on solid supports. This method is based on binding the enzymes to an immobilized antibody through the antigen binding site of the antibody. Enzymes immobilized this way retain much of their activity. The utility of immobilized enzyme reactors prepared by immobilizing the enzymes through antibodies is demonstrated by using them in the determination of acetylcholine and choline in brain tissue extracts. Currently available methods for immobilizing antibodies and enzymes are reviewed. Other issues discussed in this review include the problems and advantages of immobilized enzyme reactors, especially when used in conjunction with HPLC. In addition, the applications of monoclonal antibodies for the detection and measurement of enzymes and their isoforms are summarized.  相似文献   

4.
Anti-glycan monoclonal antibodies have important applications in human health and basic research. Therapeutic antibodies that recognize cancer- or pathogen-associated glycans have been investigated in numerous clinical trials, resulting in two FDA-approved biopharmaceuticals. Anti-glycan antibodies are also utilized to diagnose, prognosticate, and monitor disease progression, as well as to study the biological roles and expression of glycans. High-quality anti-glycan mAbs are still in limited supply, highlighting the need for new technologies for anti-glycan antibody discovery. This review discusses anti-glycan monoclonal antibodies with applications to basic research, diagnostics, and therapeutics, focusing on recent advances in mAbs targeting cancer- and infectious disease-associated glycans.  相似文献   

5.
Micellar enzymology, a new trend in molecular biology, studies catalysis by enzymes entrapped in hydrated reversed micelles of surfactants (phospholipids, detergents) in organic solvents. In this review, the key research problems of micellar enzymology are formulated and examples of biocatalysis in microheterogeneous media are discussed. In particular, new applications are presented of micellar enzymology in fine organic syntheses, in clinical and chemical analyses (bioluminescence and enzyme immunoassays), in bioconversion of energy and mass, in therapy (engineering of new drugs capable of targeted penetration into cells), as well as in biotechnology (processes using nanogranulated or nanocapsulated enzymes).  相似文献   

6.
Two clones of monoclonal antibodies against swine alkaline phosphatase (ALPase; orthophosphoric monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1), which were useful in distinguishing human kidney and bone ALPases from liver ALPase, were successfully raised in mice. On the other hand, polyclonal antibody cross-reacted not only with human kidney ALPase but also with all other human universal type ALPases. The difference in cross-reactivity of monoclonal and polyclonal antibodies may be caused by the specific antigenicity of human enzymes. The monoclonal antibodies were able to recognize minor heterogeneity that could not be distinguished by their enzymatic properties. The present monoclonal antibody preparations will be utilized for clinical as well as basic investigations to detect minor heterogeneity among universal-type ALPases.  相似文献   

7.
Two forms of phosphoinositidase C have been purified from the soluble fraction of rat brain. The purification scheme included gel filtration followed by chromatography on cellulose phosphate, phenyl-Sepharose, and Mono Q. Gradient sodium dodecyl sulphate-polyacrylamide gel electrophoresis gave apparent molecular masses of 151 kDa and 147 kDa. Western blotting with monoclonal antibodies showed that the isozymes corresponded to PLC-beta-1 and PLC-gamma of bovine brain. With both enzymes phosphatidylinositol 4,5-bisphosphate was a better substrate than phosphatidylinositol at neutral pH and low calcium ion concentrations. Both enzymes produced a proportion of inositol 1:2-cyclic phosphates from each substrate, particularly at acid pH. Some GTPase activity was seen in the early stages of purification, but was separated from PLC-beta-1 and PLC-gamma on Mono Q. Purified rat brain protein kinase C phosphorylated PLC-gamma but not PLC-beta-1. Incubation with the kinase increased the activity of both enzymes however, possibly by phosphorylation of another protein in the preparations.  相似文献   

8.
Chitinolytic enzymes: their contribution to basic and applied research   总被引:2,自引:2,他引:0  
After cellulose, chitin is the second most abundant renewable resource available in nature. Marine invertebrates and fungal biomass are the two main sources of chitinous waste, which is commercially exploited. The enzymes involved in chitin degradation have been particularly well studied. Such enzymes have applications in ultrastructural studies, in the preparation of chitooligosaccharides which show anti-tumour activity, as biocontrol agents and in single-cell protein production. Here, the contribution chitin enzymology can make to basic and applied research is discussed.  相似文献   

9.
The IFN-I pathway is activated in systemic lupus erythematosus (SLE) and appears to be important in the pathogenesis of the disease. As a result, several clinical trials of anti-IFN monoclonal antibodies, which hold promise to control the disease, have been launched. Additionally, activation of IFN-I might be important in the prognosis and activity assessment of the disease. Therefore, new biomarkers that reflect activity of the IFN-I pathway and are simple to measure, such as the monocyte CD64 receptor, are expected to have a great impact on the management of SLE, if properly validated.  相似文献   

10.
Techniques for antibody engineering are now overcoming the problems that have prevented monoclonal antibodies being used routinely in clinical practice. With chemical and genetic manipulation antibodies can be linked to bacterial toxins, enzymes, radionuclides, or cytotoxic drugs, allowing targeting of treatment. Antigen binding sites from antibodies raised in mice can be jointed with human IgG to reduce immunogenicity. In vitro gene amplification and genetic engineering of bacteriophage have produced large antibody gene libraries and facilitated large scale production of human monoclonal antibodies with high specificity. The trickle of monoclonal antibodies into clinical practice may soon become a flood.  相似文献   

11.
于涛  韩英伦  肖蓉  刘欣  李庆伟 《遗传》2013,35(1):55-61
单克隆抗体(Monoclonal antibody, mAb)在癌症以及自身免疫等疾病的诊断与治疗中得到广泛应用, 并且取得了重大进展。当今应用于临床的单克隆抗体是在免疫球蛋白的基础上进行改造研发而得。然而近期发现的无颌类脊椎动物的特异性抗原受体-可变淋巴细胞受体(Variable lymphocyte receptor, VLR), 为抗体类试剂或药物的研发提供了新的视角。与免疫球蛋白(Immunoglobulins, Ig)相比, VLR与抗原结合的特异性、亲和力及稳定性都优于Ig类抗体, 并且抗原特异性单克隆VLR的制备技术日趋成熟。因此, VLR在临床诊断和治疗中具有更高的应用价值, 并可能成为新一代的抗体药物。文章就VLR的基本特征、制备方法及其应用前景进行综述, 为实现VLR在临床诊断与治疗等领域中的应用提供有益参考。  相似文献   

12.
Monoclonal antibodies to three phospholipase C isozymes from bovine brain   总被引:29,自引:0,他引:29  
Murine hybridoma cell lines secreting antibodies against the three bovine isozymes of phosphoinositide-specific phospholipase C (PLC) were established: 6, 23, and 12 lines were obtained for PLC-I (150 kDa), PLC-II (145 kDa), and PLC-III (85 kDa), respectively. The antibodies were purified from ascites fluid, and their properties were studied in detail. All the antibodies cross-reacted with their corresponding PLC enzymes, but not with the other two isozymes, suggesting that the three enzymes contain very different antigenic determinants. The six antibodies elicited by bovine PLC-I also cross-reacted with human and rat enzyme, whereas three each from anti-PLC-II antibodies and anti-PLC-III antibodies did not react with the enzymes from different species. Each antibody exerts different effects on the phosphatidylinositol-hydrolyzing activity of PLC. The most inhibitory antibody for either isozyme PLC-I or PLC-II exhibits 80% inhibition, whereas no more than 20% inhibition was observed for the anti-PLC-III antibodies. Purified PLC-I frequently contains catalytically active 140- and 100-kDa forms and an inactive 41-kDa protein in addition to the intact 150-kDa form, probably due to its high sensitivity to an unidentified endogenous protease. The five anti-PLC-I antibodies which bind to the denatured 150-kDa polypeptide also recognized the 140-kDa form, whereas only three cross-reacted with the 100-kDa form, and the remaining two bound to the 41-kDa protein. Competitive binding studies with intact PLC enzymes and Western blot experiments with proteolytic digests revealed that the 6 anti-PLC-I, 23 anti-PLC-II, and 12 anti-PLC-III antibodies bind at least five, six, and seven different epitopes on PLC-I, PLC-II, and PLC-III, respectively. The fact that these monoclonal antibodies bind to different epitopes on the same enzyme allowed one to develop a highly specific and sensitive tandem radioimmunoassay for quantitating PLC-I, PLC-II, and PLC-III. The principle of the assay is that binding of an 125I-labeled antibody to the antigen immobilized by another antibody at a distinctive binding site is proportional to the amount of antigen present. By using this method, PLC-I, PLC-II, and PLC-III could be measured quantitatively in the presence of other proteins, detergents, lipids, polyanions, and metal ions, all of which greatly affect the activity of PLC enzymes.  相似文献   

13.
We used a library of 31 monoclonal and six polyclonal antibodies to compare the structures of the two classes of cytoplasmic myosin isozymes isolated from Acanthamoeba: myosin-I, a 150,000-mol-wt, globular molecule; and myosin-II, a 400,000-mol-wt molecule with two heads and a 90-nm tail. This analysis confirms that myosin-I and -II are unique gene products and provides the first evidence that these isozymes have at least one structurally homologous region functionally important for myosin's role in contractility. Characterization of the 23 myosin-II monoclonal antibody binding sites by antibody staining of one-dimensional peptide maps and solid phase, competitive binding assays demonstrate that they bind to at least 15 unique sites on the myosin-II heavy chain. The antibodies can be grouped into six families, whose members bind close to one another. None of the monoclonal antibodies bind to myosin-II light chains and polyclonal antibodies against myosin-II light or heavy chain bind only to myosin-II light or heavy chains, respectively: no antibody binds both heavy and light chains. Six of eight monoclonal antibodies and one of two polyclonal sera that react with the myosin-I heavy chain also bind to determinants on the myosin-II heavy chain. The cross-reactive monoclonal antibodies bind to the region of myosin-II recognized by the largest family of myosin-II monoclonal antibodies. In the two papers that immediately follow, we show that this family of monoclonal antibodies to myosin-II binds to the myosin-II tail near the junction with the heads and inhibits both the actin-activated ATPase of myosin-II and contraction of gelled cytoplasmic extracts of Acanthamoeba cytoplasm. Further, this structurally homologous region may play a key role in energy transduction by cytoplasmic myosins.  相似文献   

14.
Two constitutive forms of cytochrome P-450 isozyme were isolated from microsomes prepared from a single bovine liver. The two highly purified isozymes were electrophoretically homogeneous on SDS-polyacrylamide gel and their apparent minimum molecular weights were estimated to be 50 000 and 55 000. The isozyme of smaller molecular weight, designated cytochrome P-450A, and the one of large molecular weight, designated cytochrome P-450B, were distinct proteins by the criteria, SDS-polyacrylamide gel electrophoresis, peptide maps, amino acid contents. To reveal the immunochemical relation between these two isozymes, antibodies to each isozyme was raised in rabbit. Antibodies to cytochrome P-450A gave a single precipitin line against its antigen in Ouchterlony double-diffusion plates, but did not cross-react against cytochrome P-450B. On the other hand, antibodies to cytochrome P-450B formed a single precipitin line with its antigen and did not show any cross-reactivity against cytochrome P-450B. These results indicate that two isozymes are immunochemically distinct. This conclusion was supported by the results from immunochemical staining of the SDS-polyacrylamide gel electrophoretogram of the purified isozymes and detergent-solubilized bovine liver microsomes transferred to the nitrocellulose sheet. Both cytochromes P-450 showed high catalytic activities toward (+)-benzphetamine and aminopyrine in reconstituted systems, indicating that both enzymes have a high turnover number for N-demethylation.  相似文献   

15.
We have previously identified three types of protein kinase C (a Ca2+-activated phospholipid-dependent kinase) isozymes, designated types I, II, and III, from rat brain (Huang, K.-P., Nakabayashi, H., and Huang, F. L. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 8535-8539). These enzymes are different in their elution profile from hydroxylapatite column, sites of autophosphorylation, and immunoreactivity toward two types of monoclonal antibodies. Now we describe the purification of similar protein kinase C isozymes from monkey brain and their regional distribution in the brain. These primate enzymes all have the same molecular weight of 82,000, and each type of isozyme cross-reacts with the purified monospecific antibodies against its corresponding rat brain counterpart isozyme. These purified antibodies were used to quantify the relative contents of three types of protein kinase C isozymes in various regions of rat and monkey brains. In rat brain, cerebellum contained a high level of the type I isozyme; cerebral cortex, thalamus, and corpus callosum were high in the type II enzyme; and olfactory bulb was highest in the type III enzyme. In monkey brain, the type I isozyme was found to be enriched in cerebellum, hippocampus, and amygdala; the type II enzyme was at very high level in caudate, frontal and motor cerebral cortices, substantia nigra, and thalamus; and the type III enzyme was at the highest level in olfactory bulb. These results indicate that protein kinase C isozymes are differentially distributed in various regions of rat and monkey brains and suggest a unique role for each isozyme in controlling the different neuronal functions in the brain.  相似文献   

16.
The neisserial Lip antigen is a conserved antigen associated with the pathogenic Neisseria species, and is composed of multiple repeats of a consensus pentapeptide. A series of monoclonal antibodies reacting with meningococcal Lip antigen were subjected to epitope mapping, using solid-phase synthetic peptides based on the consensus repeat sequence. The antibodies were found to recognize different continuous epitopes based on the consensus sequence. One monoclonal antibody was utilized in affinity chromatography to obtain purified Lip antigen and the antigen was used for immunization of mice. The resulting antisera did not recognize Lip antigen on Western blots but reacted specifically with Lip antigen in immune precipitation experiments, indicating that the predominant polyclonal immune response was directed against conformational epitopes. Despite the diversity of both continuous and conformational epitopes recognized by the antibodies produced, none of the antibodies demonstrated the ability to promote complement-mediated bactericidal activity. Thus despite its initial apparent promise as a potential vaccine candidate the case for the inclusion of Lip antigen in vaccine formulation cannot be supported at present.  相似文献   

17.
An anti-calmodulin monoclonal antibody having an absolute requirement for Ca2+ has been produced from mice immunized with a mixture of calmodulin and calmodulin-binding proteins. Radioimmune assays were developed for the determination of its specificity. the epitope for this antibody resides on the COOH-terminal half of the mammalian protein. Plant calmodulin or troponin C had little reactivity. The apparent affinity of the antibody for calmodulin was increased approximately 60-fold in the presence of heart calmodulin-dependent phosphodiesterase. The presence of heart phosphodiesterase in the radioimmune assay greatly enhanced the sensitivity for calmodulin. The intrinsic calmodulin subunit of phosphorylase kinase and calmodulin which was bound to brain phosphodiesterases was also recognized with high affinity by the antibody. The antibody reacted poorly with calmodulin which was bound to heart or brain calcineurin, skeletal muscle myosin light chain kinase, or other calmodulin-binding proteins. In direct binding experiments, most of the calmodulin-binding proteins studied were unreactive with the antibody. This selectivity allowed purification of heart and two brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes on immobilized antibody affinity columns. Phosphodiesterase activity was adsorbed directly from crude samples and specifically eluted with EGTA. Isozyme separation was accomplished using a previously described anti-heart phosphodiesterase monoclonal antibody affinity support. The brain isozymes differed not only in reactivity with the anti-phosphodiesterase antibody, but also in apparent subunit molecular weight, and relative specificity for cAMP and cGMP as substrates. The calmodulin activation constants for the brain enzymes were 10-20-fold greater than for the heart enzyme. The data suggest that the binding of ligands to Ca2+/calmodulin induce conformation changes in calmodulin which alter reactivity with the anti-calmodulin monoclonal antibody. The differential antibody reactivity toward calmodulin-enzyme complexes indicates that target proteins either induce very different conformations in calmodulin and/or interact with different geometries relative to the antibody binding site. The anti-calmodulin monoclonal antibody should be useful for the purification of other calmodulin-dependent phosphodiesterases as well as isozymes of phosphorylase kinase.  相似文献   

18.
Bispecific and bifunctional monoclonal antibodies as second generation monoclonals, produced by conventional chemical or somatic methods, have proved useful in the immunodiagnosis and immunotherapy of cancer and other diseases. Recombinant antibodies produced by genetic engineering techniques have also become available for use in preclinical and clinical studies. Furthermore, through genetic engineering, it is possible to remove or add on key protein domains in order to create designer antibody molecules with two or more desired functions. This review summarizes the strategies for development of single chain variable fragment (scFv) bifunctional and bispecific antibodies. The advantages and disadvantages as well as the problems of generating the various bispecific and bifunctional antibody constructs are reported and discussed. Since conventionally prepared bispecific and bifunctional monoclonal antibodies have already shown promise in clinical trials and results from preclinical studies of recombinant bispecific antibodies are encouraging, clinical trials in humans of recombinant bispecific and bifunctional antibodies, as a new generation of biologicals, are likely to be the thrust in the next decade and beyond.  相似文献   

19.
In the last decade an increasing number of antibodies have made their way from the research benchtops into the clinics and many more are currently under clinical trial. Among monoclonal antibody-producing techniques, phage-display is undoubtedly the most effective and versatile. Cloning of the entire humoral repertoire derived from an infected patients into a phage display vector allows not only the simple generation of monoclonal antibodies of desired specificity, but also the molecular dissection of the antibody response itself. Generation of large panels of human monoclonal antibodies against human pathogens could open new perspectives in understanding the interplay between the infectious agent and the infected host providing tools for the prevention and the therapy of human communicable diseases. In this paper the basic principles of the phage-display approach as well as its most recent applications are reviewed.  相似文献   

20.
Recently, the existence of 40-kd and 46-kd 2-5A synthetases in interferon-treated cells has been confirmed by cloning and characterization of cDNA corresponding to these small size enzymes. By the use of specific monoclonal antibodies, we describe here two forms of high mol. wt 2-5A synthetases of 69 and 100 kd in human cells. The monoclonal antibodies immunoprecipitate either a 69- or a 100-kd 2-5A synthetase. These purified 2-5A synthetases in immune complex preparations are active, i.e. addition of poly(I).poly(C) and ATP results in the synthesis of 2-5A. Both 2-5A synthetases are composed of several subspecies with similar isoelectric points in the range of 7-8 but have different subcellular localizations: 100-kd synthetase is recovered from the microsomal pellet whereas 69-kd synthetase is found to be associated with cell membranes as well as with the microsomal pellet. Different types of interferon-treated human cells express both or either forms of these enzymes. The 69- and 100-kd 2-5A synthetases were also identified by electrophoretic transfer immunoblot analysis using rabbit polyclonal antibodies against a synthetic peptide common on both 46- and 40-kd 2-5A synthetases. These results indicate that small and large size isozymes share a common peptide sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号