首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freeze-thawed rat liver mitochondria were extensively washed with potassium phosphate, pH 7.5, and the residue was extracted with 10 mM potassium phosphate, pH 7.5, 1% (w/v) sodium cholate, 0.5 M KCl. The four beta-oxidation enzyme activities of the washes and the last extract were assayed with substrates of various carbon chain lengths. Our data suggest that the last extract contains a novel acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase. A novel acyl-CoA dehydrogenase was purified. The molecular masses of the native enzyme and the subunit were estimated to be 150 and 71 kDa, respectively. One mole of enzyme contained 2 mole of FAD. These properties and immunochemical properties of the enzyme differed from those of three other acyl-CoA dehydrogenases: short-, medium-, and long-chain acyl-CoA dehydrogenases. Carbon chain length specificity of the enzyme differed from that of other acyl-CoA dehydrogenases. The enzyme was active toward CoA esters of long- and very-long-chain fatty acids, but not toward those of medium- and short-chain fatty acids. The specific enzyme activity was greater than 10 times that of long-chain acyl-CoA dehydrogenase when palmitoyl-CoA was used as substrate. We propose the name "very-long-chain acyl-CoA dehydrogenase" for this enzyme.  相似文献   

2.
J X Li  H Schulz 《Biochemistry》1988,27(16):5995-6000
In an attempt to develop a compound which would specifically inhibit 3-ketoacyl-CoA thiolase (EC 2.3.1.16) in whole mitochondria, 4-bromo-2-octenoic acid was synthesized and studied. After rat liver mitochondria were preincubated with 4-bromo-2-octenoic acid for 3 min, respiration supported by either palmitoylcarnitine or pyruvate was completely abolished, whereas no inhibition was observed with rat heart mitochondria. Addition of carnitine stimulated respiration supported by pyruvate without relieving inhibition of palmitoylcarnitine-dependent respiration. Hence, this compound seems to be a specific inhibitor of beta-oxidation. When the enzymes of beta-oxidation were assayed in a soluble extract prepared from mitochondria preincubated with 4-bromo-2-octenoic acid, only 3-ketoacyl-CoA thiolase was found to be inactivated. 4-Bromo-2-octenoic acid is metabolized by mitochondrial beta-oxidation enzymes to 3-keto-4-bromooctanoyl-CoA which effectively and irreversibly inhibits 3-ketoacyl-CoA thiolase but not acetoacetyl-CoA thiolase (EC 2.3.1.9). Even though 3-keto-4-bromooctanoyl-CoA inhibits the latter enzyme reversibly, 4-bromo-2-octenoic acid does not inhibit ketogenesis in rat liver mitochondria with acetylcarnitine as a substrate. It is concluded that 4-bromo-2-octenoic acid specifically inhibits mitochondrial fatty acid oxidation by inactivating 3-ketoacyl-CoA thiolase in rat liver mitochondria.  相似文献   

3.
A multifunctional protein from oleate-grown cells of Candida tropicalis has been purified and partially characterized. A simple two-step purification has been developed involving ion-exchange chromatography followed by dye-ligand chromatography on blue Sepharose CL-6B. Homogeneous enzyme with a subunit Mr of 102 000 is obtained in 60% yield. The native relative molecular mass, determined by three different methods, yielded values which suggest that the enzyme is dimeric. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the purified protein revealed a single polypeptide band and reverse-phase high-performance liquid chromatography indicated a single component suggesting that this protein may consist either of two identical or very similar subunits. Three beta-oxidation activities, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase and 3-hydroxyacyl-CoA epimerase, co-purified with this protein. The ratio of the three beta-oxidation enzyme activities remained constant during purification and was unchanged by additional chromatographic methods (adsorption and affinity chromatography), thus indicating the multifunctional nature of this protein. Enzymatic staining of the purified protein for 3-hydroxyacyl-CoA dehydrogenase and epimerase, following electrophoresis in a polyacrylamide density gradient, further supported the multifunctionality of this protein. After isopycnic centrifugation of a particulate fraction from oleate-grown cells in a linear sucrose gradient the activities of all individual beta-oxidation enzymes cosedimented with catalase and with the glyoxylate bypass enzymes. This result demonstrated the peroxisomal localization of the multifunctional enzyme. The relationship of this multifunctional protein to the two bifunctional beta-oxidation enzymes isolated from peroxisomes of rat liver and from glyoxysomes of cucumber seeds is discussed.  相似文献   

4.
5.
There are two 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) in rat liver, one in mitochondria (type I enzyme), and another in peroxisomes (type II enzyme). In a series of the studies on the properties and the physiological roles of fatty acid oxidation systems in both organelles, the two enzymes were purified and compared for their properties. The final preparations obtained were judged to be homogeneous based on the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and sedimentation velocity analysis. Type I enzyme was composed of two identical subunits of molecular weight of 32,000, whereas type II enzyme was a monomeric enzyme having a molecular weight of 70,000–77,000. These subunit structures were confirmed by the results of fluorescence studies. Both enzymes were different in amino acid compositions, especially in the contents of tryptophan and half-cystine. Antibodies against them formed single precipitin lines for the corresponding enzymes, but not for the others when subjected to an Ouchterlony double-diffusion test. The Km values of type II enzyme for various substrates were lower than those of type I enzyme except those for acetoacetyl-CoA. As for 3-hydroxyacyl-CoA substrates, both enzymes had lower Km's for longer-chain substrates. The V for the substrates of C4C10 were similar for each enzyme, though the value of type II enzyme for C10 substrate was rather lower. The results of fluorescence studies suggested that their dissociation constants for NADH were lower and those for NAD+ were higher at lower pH. Both enzymes were specific to l-form of 3-hydroxyacyl-CoA substrate. The optimal pH of the forward reaction of type I and type II enzymes was 9.6 and 9.8, and of the reverse reaction, 4.5 and 6.2, respectively. From these results they were concluded to be completely different enzymes.  相似文献   

6.
Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.  相似文献   

7.
Activity of enoyl-CoA hydratase in rat liver was elevated about 6-fold by the administration of di-(2-ethylhexyl)phthalate, a hepatic peroxisome proliferator. Almost all of the increased activity was the peroxisomal enzyme, which was distinguished by its heat-lability from mitochondrial one. Heat-labile enoyl-CoA hydratase was copurified with peroxisomal 3-hydroxyacyl-CoA dehydrogenase. The purified enzyme corresponded to a peroxisome specific peptide with a molecular weight of 80,000.  相似文献   

8.
Peroxisomal delta 3, delta 2-enoyl-CoA isomerase (EC 5.3.3.8) was studied in the liver of rats treated with clofibrate. The mitochondrial and peroxisomal isoenzymes were separated chromatographically and the peroxisomal isomerase purified to apparent homogeneity. In addition to the isomerization of 3-enoyl-CoA esters, the purified protein also catalyzed hydration of trans-2-enoyl-CoA and oxidation of L-3-hydroxyacyl-CoA. Incubation of the purified protein with trans-3-decenoyl-CoA, NAD+, and Mg2+ resulted in an increase in absorbance at 303 nm, indicating the formation of 3-ketoacyl-CoA. The protein purified was monomeric, with an estimated molecular weight of 78,000. In immunoblotting it was recognized by the antibody to peroxisomal bifunctional protein from rat liver. Comparison of the amino acid sequences of cyanogen bromide cleaved isomerase with the known sequence of the peroxisomal bifunctional protein from the rat identified them as the same molecule. In control experiments, the peroxisomal bifunctional protein purified according to published methods also catalyzed delta 3, delta 2-enoyl-CoA isomerization. This means that the bifunctional protein of rat liver is in fact a trifunctional enzyme possessing delta 3, delta 2-enoyl-CoA isomerase, 2-enoyl-CoA hydratase (EC 4.2.1.17), and L-3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities in the same polypeptide.  相似文献   

9.
A trifunctional beta-oxidation protein, designated TFP, was purified to apparent homogeneity from oleate-induced mycelia of Neurospora crassa. 2-Enoyl-CoA hydratase, L-3-hydroxyacyl-CoA dehydrogenase, and 3-hydroxyacyl-CoA epimerase activities copurified in constant ratios with this protein when crude extracts were subjected to cation-exchange, dye-ligand, and adsorption chromatography. Trifunctionality was substantiated by coinciding enzyme activity ratios during the last two purification steps and additional chromatographic steps. The enzyme was shown to be a 365-kDa tetramer of subunits with a molecular mass of 93 kDa. Several lines of evidence suggest that these subunits are identical. Monospecific antibodies raised against the homogenous protein specifically precipitated the three enzymatic activities of TFP. Immunoblotting of fractions obtained after sucrose density gradient centrifugation of a crude extract indicated that TFP was exclusively localized in glyoxysome-like microbodies. The beta-oxidation system of N. crassa is structurally related to those of peroxisomes despite the presence of an acyl-CoA dehydrogenase rather than an acyl-CoA oxidase. A mitochondrial 2-enoyl-CoA hydratase activity was separated from TFP and purified to apparent homogeneity. The absence of all other beta-oxidation activities from mitochondria suggests that this organelle and its 2-enoyl-CoA hydratase are not involved in fatty acid degradation in N. crassa.  相似文献   

10.
Summary 3-D-(-) hydroxybutyrate dehydrogenase (EC 1.1.1.30) from rat-liver mitochondria was purified in the form of the soluble, phospholipid-free apoenzyme by a procedure involving: (1) solubilization of the membrane bound enzyme by controlled digestion of membrane phospholipids with porcine pancreas phospholipase A2; (2) stabilization and separation of the released apoenzyme as a complex with egg-lecithin by gel filtration on Sephadex G-100; and (3) specific displacement of the apoenzyme from the enzyme-lecithin complex by treatment withBothrops atrox venom phospholipase A2 (in the absence of Ca2+ ions) and subsequent separation of the displaced apoenzyme by gel filtration on Sephadex G-100. The method described is adequate for samples containing about 40 mg of mitochondrial protein. The yield in activity is 42% of that present in mitochondria and the degree of purification of the apodehydrogenase is about 170 fold. The purified apodehydrogenase shows one single sharp band when submitted to SDS polyacrylamide gel electrophoresis, with a mobility corresponding to a molecular weight of 38000 daltons. Gel filtration of the apoenzyme on Sephadex G-100 shows two active peaks with molecular weights of 76000 and 38500 daltons, indicating two different states of aggregation, namely, monomer and dimer. The corresponding diffusion coefficients are 7.73 (monomer) and 5.70 (dimer) × 10–7. The apodehydrogenase preparation is devoid of phospholipids and is catalytically inactive. It can be reactivated by addition of egg lecithin or phospholipid mixtures containing lecithin in a suitable physical state. Reactivation occurs after formation of an active apodehydrogenase phospholipid complex.Abbreviations HBD 3-D-(-) hydroxybutyrate dehydrogenase - apoHBD 3-D-(-) hydroxybutyrate dehydrogenase apoenzyme - SMP submitochondrial particles - DFP diisopropylfluorophosphate - BSA bovine serum albumin - MPL mitochondrial phospholipids - L-diC14 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine - lysoC14 1-myristoyl-sn, glycero-3-phosphorylcholine - D-diC10 2.3-didecanoyl-sn-glycero-1-phosphorylcholine - tlc thin layer chromatography - SDS sodium dodecylsulfate Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.  相似文献   

11.
We have purified the membrane-intrinsic glycerol-3-phosphate dehydrogenase from both normal and hyperthyroid rat liver mitochondria by extraction with Triton X-100, hydrophobic affinity chromatography, ion exchange chromatography, gel filtration, and FAD-linked Sepharose 4B affinity chromatography. The yields in both cases were over 20%, and purification ranged from 800- to 650-fold in mitochondria from hyperthyroid and normal rats, respectively. The final preparations appeared to be greater than 95% pure by polyacrylamide gel electrophoresis in the presence or absence of sodium dodecyl sulfate. The pure enzyme focused at pH 5.5 and produced a biphasic thermal inactivation plot at 50 degrees C. The holoenzyme was found to have a molecular mass of 250,000 daltons on gel filtration. The subunit molecular mass was found to be 74,000 daltons +/- 3,000 by sodium dodecyl sulfate-gel electrophoresis and high-performance liquid chromatography gel filtration in 0.1% sodium dodecyl sulfate. 1 mol of the holoenzyme preparation contains 1.1 mol of non-heme iron and 0.7-0.9 mol of noncovalently bound FAD. The absorption spectrum has a maximum at 375 nm and a shoulder at 450 nm which is bleached on treatment with sodium dithionite. The enzymatic reaction is competitively inhibited by glyceraldehyde 3-phosphate, dihydroxyacetone phosphate, phosphoenolpyruvate, and phosphoglycolic acid. The apparent Km for DL-alpha-glycerol 3-phosphate and noncovalently bound FAD were found to be 6 mM and 7 microM, respectively.  相似文献   

12.
The mechanism by which fatty acid addition leads to the inactivation of pyruvate dehydrogenase in intact rat liver mitochondria was investigated. In all cases the fatty acid octanoate was added to mitochondria oxidizing succinate. Addition of fatty acid caused an inactivation of pyruvate dehydrogenase in mitochondria incubated under State 3 conditions (glucose plus hexokinase), in uncoupled, oligomycin-treated mitochondria, and in rotenone-menadione-treated mitochondria, but not in uncoupled mitochondria or in mitochondria incubated under State 4 conditions. A number of metabolic conditions were found in which pyruvate dehydrogenase was inactivated concomitant with an elevation in the ATP/ADP ratio. This is consistent with the inverse relationship between the ATP/ADP ratio and the pyruvate dehydrogenase activity proposed by various laboratories. However, in several other metabolic conditions pyruvate dehydrogenase was inactivated while the ATP/ADP ratio either was unchanged or even decreased. This observation implies that there are likely other regulatory factors involved in the fatty acid-mediated inactivation of pyruvate dehydrogenase. Incubation conditions in State 3 were found in which the ATP/ADP and the acetyl-CoA/CoASH ratios remained constant and the pyruvate dehydrogenase activity was correlated inversely with the NADH/NAD+ ratio. Other State 3 conditions were found in which the ATP/ADP and the NADH/NAD+ ratios remained constant while the pyruvate dehydrogenase activity was correlated inversely with the acetyl-CoA/CoASH ratio. Further evidence supporting these experiments with intact mitochondria was the observation that the pyruvate dehydrogenase kinase activity of a mitochondrial extract was stimulated strongly by acetyl-CoA and was inhibited by NAD+ and CoASH. In contrast to acetyl-CoA, octanoyl-CoA inhibited the kinase activity. These results indicate that the inactivation of pyruvate dehydrogenase by fatty acid in isolated rat liver mitochondria may be mediated through effects of the NADH/NAD+ ratio and the acetyl-CoA/CoASH ratio on the interconversion of the active and inactive forms of the enzyme complex catalyzed by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase.  相似文献   

13.
14.
delta-Aminolevulinic acid synthetase has been purified from liver mitochondria of young, uninduced rats. After nonionic detergent solubilization of mitochondrial inner membrane-matrix fractions, the enzyme was purified to a specific activity of approximately 2,000 nmol of delta-aminolevulinic acid formed/h/mg of protein at 30 degrees C, by means of ammonium sulfate precipitation, diethylaminoethyl cellulose chromatography, Sephacryl chromatography, and preparative gel electrophoresis. The purified enzyme preparation thus obtained was apparently homogeneous as judged by its migration as a single band with a molecular weight of 58,000 +/- 6,000 upon electrophoresis in sodium dodecyl sulfate polyacrylamide gels. The native enzyme probably exists as a dimer with a molecular weight of approximately 120,000. A pH optimum of 7.5 and an isoelectric point of 4.5 were also determined. Both monovalent cations and hemin strongly inhibited the activity of the purified enzyme.  相似文献   

15.
The influence of fatty acid on the interconversion of the pyruvate dehydrogenase complex (PDH) between its active (dephospho-) and inactive (phospho-) forms and on the intramitochondrial ATPADP, NADHNAD+ and acetyl-CoACoASH ratios was studied in isolated rat liver mitochondria. Conditions were found in which the PDH activity was inversely correlated only with the NADHNAD+ ratio. Under other conditions the PDH activity was inversely correlated solely with the acetyl-CoACoASH ratio. These experiments suggest that the activity of the regulatory enzymes involved in the inactivation and reactivation of the pyruvate dehydrogenase multienzyme complex may be controlled by both the intramitochondrial NADHNAD+ and acetyl-CoACoASH ratios.  相似文献   

16.
The mitochondrial DNA-binding protein P16 was isolated from rat liver mitochondrial lysates by affinity chromatography on single strand DNA agarose and separated from DNA in the preparation by alkaline CsCl isopycnic gradients. The top fraction of the gradients contained a single polypeptide species (Mr approximately equal to 15,200) based upon SDS PAGE. Digestion of single strand DNA-bound P16 with proteinase K produced a protease-insensitive, DNA-binding fragment (Mr approximately equal to 6,000) that has been purified by essentially the same procedures used for intact P16. The partial amino acid compositions for P16 and the DNA-binding fragment were obtained by conventional methods. Analysis of subcellular fractions revealed that nearly all of the cellular P16 was located in the mitochondria and that only trace amounts of protein of comparable electrophoretic mobility could be isolated from the nuclear or cytoplasmic fractions. The labeling of P16 with [35S]methionine in primary rat hepatocyte cultures was inhibited by more than 90% by the cytoplasmic translation inhibitor cycloheximide, but unaffected by the mitochondrial-specific agent chloramphenicol. These results indicate that P16 is synthesized on cytoplasmic ribosomes and imported into the mitochondria. The addition of purified P16 to deproteinized mitochondrial DNA resulted in the complete protection of the labeled nascent strands of displacement loops against branch migrational loss during cleavage of parental DNA with SstI, thus providing strong evidence that P16 is the single entity required for this in vitro function. Incubation of P16 with single strand phi X174 DNA, double strand (RF) phi X174 DNA, or Escherichia coli ribosomal RNA and subsequent analysis of the nucleic acid species for bound protein indicated a strong preference of P16 for single strand DNA and no detectable affinity for RNA or double strand DNA. Examination of P16-single strand phi X174 DNA complexes by direct electron microscopy revealed thickened, irregular fibers characteristic of protein-associated single strand DNA.  相似文献   

17.
18.
Kinetic and inhibition studies of partially purified deoxyadenosine kinase (ATP: deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76, AdR kinase) from rat liver mitochondria were performed, including reaction properties, specificity of phosphate donors, phosphate acceptors, influence of nucleotides, nucleosides and their derivatives. The results were compared with those obtained from partially purified AdR kinase from rat liver cytosol.  相似文献   

19.
A novel D-(-)-3-hydroxyacyl-CoA hydro-lyase, forming 2-trans-enoyl-CoA and formerly designated as epimerase (EC 5.1.2.3), was extracted from fat-degrading cotyledons of cucumber seedlings. The enzyme, called D-3-hydroxyacyl-CoA hydro-lyase or D-specific 2-trans-enoyl-CoA hydratase, is shown to be required for the degradation of unsaturated fatty acids that contain double bonds extending from even-numbered C atoms. The D-3-hydroxyacyl-CoA hydro-lyase was exclusively localized within peroxisomes. A 10,000-fold purification by chromatography on a hydrophobic matrix, a cation exchanger, on hydroxyapatite and Mono S led to two proteins of apparent homogeneity, both exhibiting Mr of 65,000. The D-3-hydroxyacyl-CoA hydro-lyases are homodimers with slightly differing isoelectric points around pH = 9.0. They catalyze the conversion of 2-trans-enoyl-CoA into D-3-hydroxyacyl-CoA. The reverse reaction was observed but no reaction with 2-cis-enoyl-CoAs or L-3-hydroxyacyl-CoAs. 2-trans-Decenoyl-CoA was converted 10-times faster than 2-trans-butenoyl-CoA. The conversion of 4-cis-decenoyl-CoA into octenoyl-CoA was demonstrated in vitro with purified proteins with an assay mixture containing acyl-CoA oxidase, multifunctional protein, thiolase and the D-3-hydroxyacyl-CoA hydro-lyase. Comparisons of enzyme activities present in the cotyledons or isolated peroxisomes clearly show that the pathway via dienoyl-CoA reductase is much less effective than the sequence involving D-3-hydroxyacyl-CoA hydro-lyase.  相似文献   

20.
The phosphate transport protein was purified from rat liver mitochondria by extraction in an 8% (v/v) Triton X-100 buffer followed by adsorption chromatography on hydroxyapatite and Celite. SDS/polyacrylamide-gel electrophoresis (10%, w/v) demonstrated that the purified polypeptide was apparently homogeneous when stained with Coomassie Blue and had a subunit Mr of 34,000. However, lectin overlay analysis of this gel with 125I-labelled concanavalin A demonstrated the presence of several low- and high-Mr glycoprotein contaminants. To overcome this problem, mitochondria were pre-extracted with a 0.5% (v/v) Triton X-100 buffer as an additional step in the purification of phosphate transport protein. SDS/polyacrylamide gradient gel electrophoresis (14-20%, w/v) of the hydroxyapatite and Celite eluates revealed one major band of Mr 34,000 when stained with Coomassie Blue. The known thiol group sensitivity of the phosphate transporter was employed to characterize the isolated polypeptide further. Labelling studies with N-[2-3H]ethylmaleimide showed that only the 34,000-Mr band was labelled in both the hydroxyapatite and Celite fractions, when purified from rat liver mitochondria. Further confirmation of its identity has been provided with an antiserum directed against the 34,000-Mr protein. Specific partial inhibition of phosphate uptake, as measured by iso-osmotic swelling in the presence of (NH4)2HPO4, was achieved when mitoplasts (mitochondria minus outer membrane) were incubated with this antiserum. Finally, amino acid analysis of the rat liver mitochondrial phosphate/hydroxyl ion antiport protein indicates that it is similar in composition to the equivalent protein isolated from ox heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号