首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We present a comprehensive analysis of carbohydrate uptake systems of the soil bacterium Mycobacterium smegmatis and the human pathogen Mycobacterium tuberculosis. Our results show that M. smegmatis has 28 putative carbohydrate transporters. The majority of sugar transport systems (19/28) in M. smegmatis belong to the ATP-binding cassette (ABC) transporter family. In contrast to previous reports, we identified genes encoding all components of the phosphotransferase system (PTS), including permeases for fructose, glucose, and dihydroxyacetone, in M. smegmatis. It is anticipated that the PTS of M. smegmatis plays an important role in the global control of carbon metabolism similar to those of other bacteria. M. smegmatis further possesses one putative glycerol facilitator of the major intrinsic protein family, four sugar permeases of the major facilitator superfamily, one of which was assigned as a glucose transporter, and one galactose permease of the sodium solute superfamily. Our predictions were validated by gene expression, growth, and sugar transport analyses. Strikingly, we detected only five sugar permeases in the slow-growing species M. tuberculosis, two of which occur in M. smegmatis. Genes for a PTS are missing in M. tuberculosis. Our analysis thus brings the diversity of carbohydrate uptake systems of fast- and a slow-growing mycobacteria to light, which reflects the lifestyles of M. smegmatis and M. tuberculosis in their natural habitats, the soil and the human body, respectively.  相似文献   

3.
Until recently, genetic analysis of Mycobacterium tuberculosis, the causative agent of tuberculosis, was hindered by a lack of methods for gene disruptions and allelic exchange. Several groups have described different methods for disrupting genes marked with antibiotic resistance determinants in the slow-growing organisms Mycobacterium bovis bacillus Calmette-Guérin (BCG) and M. tuberculosis. In this study, we described the first report of using a mycobacterial suicidal plasmid bearing the counterselectable marker sacB for the allelic exchange of unmarked deletion mutations in the chromosomes of two substrains of M. bovis BCG and M. tuberculosis H37Rv. In addition, our comparison of the recombination frequencies in these two slow-growing species and that of the fast-growing organism Mycobacterium smegmatis suggests that the homologous recombination machinery of the three species is equally efficient. The mutants constructed here have deletions in the lysA gene, encoding meso-diaminopimelate decarboxylase, an enzyme catalyzing the last step in lysine biosynthesis. We observed striking differences in the lysine auxotrophic phenotypes of these three species of mycobacteria. The M. smegmatis mutant can grow on lysine-supplemented defined medium or complex rich medium, while the BCG mutants grow only on lysine-supplemented defined medium and are unable to form colonies on complex rich medium. The M. tuberculosis lysine auxotroph requires 25-fold more lysine on defined medium than do the other mutants and is dependent upon the detergent Tween 80. The mutants described in this work are potential vaccine candidates and can also be used for studies of cell wall biosynthesis and amino acid metabolism.  相似文献   

4.
Lama A  Pawaria S  Dikshit KL 《FEBS letters》2006,580(17):4031-4041
Unraveling of microbial genome data has indicated that two distantly related truncated hemoglobins (trHbs), HbN and HbO, might occur in many species of slow-growing pathogenic mycobacteria. Involvement of HbN in bacterial defense against NO toxicity and nitrosative stress has been proposed. A gene, encoding a putative HbN homolog with conserved features of typical trHbs, has been identified within the genome sequence of fast-growing mycobacterium, Mycobacterium smegmatis. Sequence analysis of M. smegmatis HbN indicated that it is relatively smaller in size and lacks N-terminal pre-A region, carrying 12-residue polar sequence motif that is present in HbN of M. tuberculosis. HbN encoding gene of M. smegmatis was expressed in E. coli as a 12.8kD homodimeric heme protein that binds oxygen reversibly with high affinity (P50 approximately 0.081 mm Hg) and autooxidizes faster than M. tuberculosis HbN. The circular dichroism spectra indicate that HbN of M. smegmatis and M. tuberculosis are structurally similar. Interestingly, an hmp mutant of E. coli, unable to metabolize nitric oxide, exhibited very low NO uptake activity in the presence of M. smegmatis HbN as compared to HbN of M. tuberculosis. On the basis of cellular heme content, specific nitric oxide dioxygenase (NOD) activity of M. smegmatis HbN was nearly one-third of that from M. tuberculosis. Additionally, the hmp mutant of E. coli, carrying M. smegmatis HbN, exhibited nearly 10-fold lower cell survival under nitrosative stress and nitrite derived reactive nitrogen species as compared to the isogenic strain harboring HbN of M. tuberculosis. Taken together, these results suggest that NO metabolizing activity and protection provided by M. smegmatis HbN against toxicity of NO and reactive nitrogen is significantly lower than HbN of M. tuberculosis. The lower efficiency of M. smegmatis HbN for NO detoxification as compared to M. tuberculosis HbN might be related to different level of NO exposure and nitrosative stress faced by these mycobacteria during their cellular metabolism.  相似文献   

5.
Song H  Niederweis M 《Gene》2007,399(2):112-119
Mycobacteria contain a large number of redundant genes whose functions are difficult to analyze in mutants because there are only two efficient antibiotic resistance genes available for allelic exchange experiments. Sequence-specific recombinbases such as the Flp recombinase can be used to excise resistance markers. Expression of the flp(e) gene from Saccharomyces cerevisiae is functional for this purpose in fast-growing Mycobacterium smegmatis but not in slow-growing mycobacteria such as M. bovis BCG or M. tuberculosis. We synthesized the flp(m) gene by adapting the codon usage to that preferred by M. tuberculosis. This increased the G+C content from 38% to 61%. Using the synthetic flp(m) gene, the frequency of removal of FRT-hyg-FRT cassette from the chromosome by the Flp recombinase was increased by more than 100-fold in M. smegmatis. In addition, 40% of all clones of M. bovis BCG had lost the hyg resistance cassette after transient expression of the flp(m) gene. Sequencing of the chromosomal DNA showed that excision of the FRT-hyg-FRT cassette by Flp was specific. These results show that the flp(m) encoded Flp recombinase is not only an improved genetic tool for M. smegmatis, but can also be used in slow growing mycobacteria such as M. tuberculosis for constructing unmarked mutations. Other more sophisticated applications in mycobacterial genetics would also profit from the improved Flp/FRT system.  相似文献   

6.
7.
Mycobacterium smegmatis is a saprophytic species that has been used for 15 years as a model to perform heterologous regulation and virulence studies of Mycobacterium tuberculosis. Members of the extracytoplasmic sigma factors family, which are required for adaptive responses to various environmental stresses, are responsible for some of the virulence traits of M. tuberculosis. A bioinformatic search on the genome of M. smegmatis has predicted the existence of 26 sigma factors, which is twice the number that are present in M. tuberculosis. A phylogenetic analysis has shown that despite this high number of sigma factors the orthologs of the genes sigC, sigI and sigK of M. tuberculosis are absent in the M. smegmatis genome. Several sigma factors are specific for M. smegmatis, with a special enrichment in the sigH and, to a lesser extent, in the sigJ and sigL subfamily, pinpointing the potential variability of the repertoire of adaptive response in this saprophytic species.  相似文献   

8.
The critical role of embC in Mycobacterium tuberculosis   总被引:1,自引:0,他引:1  
  相似文献   

9.
The gene encoding of an alcohol dehydrogenase C (ADHC) from Mycobacterium smegmatis was cloned and sequenced. The protein encoded by this gene has 78% identity with Mycobacterium tuberculosis and Mycobacterium bovis BCG ADHC. The M. smegmatis ADHC was purified from M. smegmatis and the kinetic parameters of this enzyme showed that using NADPH as electron donor it has a strong preference for aliphatic and aromatic aldehyde substrates. Like the M. bovis BCG ADHC, this enzyme is more likely to act as an aldehyde reductase than as an alcohol dehydrogenase. The discovery of such an ADHC in a fast-growing, and easily engineered mycobacterial species opens the way to the utilisation of this M. smegmatis enzyme as a convenient model for the study of the physiological role of this alcohol dehydrogenase in mycobacteria.  相似文献   

10.
Mycobacterium tuberculosis, the causative agent of tuberculosis, produces a heparin-binding haemagglutinin adhesin (HBHA), which is involved in its epithelial adherence. To ascertain whether HBHA is also present in fast-growing mycobacteria, Mycobacterium smegmatis was studied using anti-HBHA monoclonal antibodies (mAbs). A cross-reactive protein was detected by immunoblotting of M. smegmatis whole-cell lysates. However, the M. tuberculosis HBHA-encoding gene failed to hybridize with M. smegmatis chromosomal DNA in Southern blot analyses. The M. smegmatis protein recognized by the anti-HBHA mAbs was purified by heparin-Sepharose chromatography, and its amino-terminal sequence was found to be identical to that of the previously described histone-like protein, indicating that M. smegmatis does not produce HBHA. Biochemical analysis of the M. smegmatis histone-like protein shows that it is glycosylated like HBHA. Immunoelectron microscopy demonstrated that the M. smegmatis protein is present on the mycobacterial surface, a cellular localization inconsistent with a histone-like function, but compatible with an adhesin activity. In vitro protein interaction assays showed that this glycoprotein binds to laminin, a major component of basement membranes. Therefore, the protein was called M. smegmatis laminin-binding protein (MS-LBP). MS-LBP does not appear to be involved in adherence in the absence of laminin but is responsible for the laminin-mediated mycobacterial adherence to human pneumocytes and macrophages. Homologous laminin-binding adhesins are also produced by virulent mycobacteria such as M. tuberculosis and Mycobacterium leprae, suggesting that this adherence mechanism may contribute to the pathogenesis of mycobacterial diseases.  相似文献   

11.
Brown AC  Parish T 《Plasmid》2006,55(1):81-86
The Escherichia coli-mycobacterium shuttle vector pJAM2 has been used to inducibly express genes in mycobacteria. The vector carries the promoter region from the highly inducible acetamidase gene of Mycobacterium smegmatis which is used to drive expression of heterologous genes. We used pJAM2 to over-express the Mycobacterium tuberculosis gene Rv2868c, a homologue of gcpE. In M. smegmatis the plasmid was stable, but the promoter region was readily deleted when the parental vector or recombinant plasmids were transformed into M. tuberculosis. We mapped the deletion by sequencing and found that it encompassed the entire acetamidase promoter and adjacent sequence totalling approximately 7.3 kb and occurred very soon after introduction into M. tuberculosis. This is the first report of instability of a vector carrying the acetamidase promoter in M. tuberculosis.  相似文献   

12.
Mycobacteriophage L5 is a well-characterized temperate phage that forms stable lysogens in Mycobacterium smegmatis . The host range of L5 is, however, unclear because previous reports suggested that it does not infect slow-growing mycobacteria such as Mycobacterium tuberculosis and bacille Calmette-Guérin (BCG). Moreover, luciferase reporter phage derivatives of L5 failed to produce light from BCG, suggesting that infection is blocked at or before the stage of DNA injection. In this study, we demonstrate that L5 infection of slow growing mycobacteria specifically requires a high concentration of Ca2+, conditions that differs from those required for infection of M. smegmatis by L5 and for infection of BCG by the closely related phage D29. In addition, we show that there are specific genetic determinants of L5 that confer the ability to infect slow growing mycobacteria, without altering infection of M. smegmatis . These observations extend the use of phage L5 for the diagnosis and analysis of tuberculosis and other mycobacterial diseases.  相似文献   

13.
In spite of major advances in our understanding of the biology and immunology of tuberculosis, the incidence of the disease has not reduced in most parts of the world. In an attempt to improve the protective efficacy of Mycobacterium bovis bacille Calmette-Guérin (BCG), we have developed a generic vector system, pSD5, for expression of genes at varying levels in mycobacteria. In this study, we have cloned and overexpressed three immunodominant secretory antigens of M. tuberculosis, 85A, 85B and 85C, belonging to the antigen 85 complex. All the genes were cloned under the control of a battery of mycobacterial promoters of varying strength. The expression was analysed in the fast-growing strain M. smegmatis and the slow-growing vaccine strain M. bovis BCG. The recombinant BCG constructs were able to express the antigens at high levels and the majority of the expressed antigens was secreted into the medium. These results show that by using this strategy the recombinant BCG approach can be successfully used for the development of candidate vaccines against infections associated with mycobacteria as well as other pathogens.  相似文献   

14.
Mycobacterium marinum , like Mycobacterium tuberculosis , is a slow-growing pathogenic mycobacteria that is able to survive and replicate in macrophages. Using the promoter-capture vector pFPV27, we have constructed a library of 200–1000 bp fragments of M. marinum genomic DNA inserted upstream of a promoterless green fluorescent protein (GFP) gene. Only those plasmids that contain an active promoter will express GFP. Macrophages were infected with this fusion library, and phagosomes containing fluorescent bacteria were isolated. Promoter constructs that were more active intracellularly were isolated with a fluorescence-activated cell sorter, and inserts were partially sequenced. The promoter fusions expressed intracellularly exhibited homology to mycobacterial genes encoding, among others, membrane proteins and biosynthetic enzymes. Intracellular expression of GFP was 2–20 times that of the same clones grown in media. Several promoter constructs were transformed into Mycobacterium smegmatis , Mycobacterium bovis BCG and Mycobacterium tuberculosis . These constructs were positive for GFP expression in all mycobacterial strains tested. Sorting fluorescent bacteria in phagosomes circumvents the problem of isolating a single clone from macrophages, which may contain a mixed bacterial population. This method has enabled us to isolate 12 M. marinum clones that contain promoter constructs differentially expressed in the macrophage.  相似文献   

15.
Knipfer N  Seth A  Roudiak SG  Shrader TE 《Gene》1999,231(1-2):95-104
We report here that the existence of the potentially broad substrate specificity protease Lon (also called La), is evolutionarily discontinuous within the order Actinomycetales. Lon homologues were identified in the fast-growing species Mycobacterium smegmatis, and the slow-growing species Micobacterium avium and Mycobacterium intracellulare. However, Lon homologues were not detected in the slow-growing species Mycobacterium tuberculosis, Mycobacterium bovis, or Mycobacterium leprae; or in the non-mycobacterial Actinomycetale Corynebacterium glutamica. To characterize the function of the Lon protease within the Actinomycetales, a viable M. smegmatis Deltalon strain was constructed, demonstrating that lon is not essential under certain conditions. Surprisingly, lon was also dispensable in M. smegmatis cells already lacking intact 20S proteasome alpha- and beta-subunit genes (called prcA and prcB, respectively). Creation of the later double deletion strain (prcBA::kan Deltalon) necessitated use of a novel gene deletion strategy that does not require an antibiotic resistance marker. The M. smegmatis prcBA::kan Deltalon double mutants displayed wild type (wt) growth rates and wt stress tolerances. In addition, the M. smegmatis prcBA::kan Deltalon double mutants degraded at wt rates the broad spectrum of truncated proteins induced by treating cells with puromycin. This later result was in sharp contrast to those in Escherichia coli, where either lon or hslUV single mutants are strongly impaired in their degradation of puromycyl peptides (hslV is a prcB homologue). Overall these data suggested that mycobacterial species contain additional ATP-dependent proteases that have broad substrate specificity. Consistent with this suggestion, M. smegmatis and M. tuberculosis each contain at least one homologue of ClpP, the proteolytic subunit common to the ClpAP and ClpXP proteases.  相似文献   

16.
Mycobacterium tuberculosis is a globally successful pathogen, infecting more than one third of total world's population. These bacteria have the remarkable ability to persist in the host for long periods of time unrecognized by the immune system and then to re-emerge later in life causing the disease. The physiology of such persistent or dormant bacilli is not very well characterized. Some evidence suggests that the dormant bacilli survive in a nutrient-deprived state that is similar to the stationary phase of the bacteria with respect to gene expression and physiology. Under this assumption we have studied the survival of Mycobacterium smegmatis in carbon starvation conditions as a model for mycobacterial persistence. M.smegmatis, being a fast-growing strain, serves as a good model to study starvation responses. Using the two-dimensional electrophoresis-based proteomics approach, we identified a protein which was found to be expressed preferentially under starvation conditions. This protein is homologous to a family of proteins called Dps (DNA binding Protein from Starved cells) that are known to protect DNA under various kinds of environmental stresses and its existence has, so far, not been reported in mycobacteria. Upon expression and purification of this protein, we observed that it has non-specific DNA-binding ability. Formation of a cage-like dodecamer structure is a characteristic feature of Dps. Using comparative modelling we were able to show that Dps from M.smegmatis could form a dodecamer structure similar to the crystal structure of Dps from Escherichia coli.  相似文献   

17.
Recent development of vectors and methodologies to introduce recombinant DNA into members of the genus Mycobacterium has provided new approaches for investigating these important bacteria. While most pathogenic mycobacteria are slow-growing, Mycobacterium smegmatis is a fast-growing, non-pathogenic species that has been used for many years as a host for mycobacteriophage propagation and, recently, as a host for the introduction of recombinant DNA. Its use as a cloning host for the analysis of mycobacterial genes has been limited by its inability to be efficiently transformed with plasmid vectors. This work describes the isolation and characterization of mutants of M. smegmatis that can be transformed, using electroporation, at efficiencies 10(4) to 10(5) times greater than those of the parent strain, yielding more than 10(5) transformants per microgram of plasmid DNA. The mutations conferring this efficient plasmid transformation (Ept) phenotype do not affect phage transfection or the integration of DNA into the M. smegmatis chromosome, but seem to be specific for plasmid transformation. Such Ept mutants have been used to characterize plasmid DNA sequences essential for replication of the Mycobacterium fortuitum plasmid pAL5000 in mycobacteria by permitting the transformation of a library of hybrid plasmid constructs. Efficient plasmid transformation of M. smegmatis will facilitate the analysis of mycobacterial gene function, expression and replication and thus aid in the development of BCG as a multivalent recombinant vaccine vector and in the genetic analysis of the virulence determinants of pathogenic mycobacteria.  相似文献   

18.
The genus Mycobacterium comprises clinically important pathogens such as M. tuberculosis , which has re-emerged as a major cause of morbidity and mortality world-wide especially with the emergence of multidrug-resistant strains. The use of fast-growing species such as Mycobacterium smegmatis has allowed important advances to be made in the field of mycobacterial genetics and in the study of the mechanisms of resistance in mycobacteria. The isolation of an aminoglycoside-resistance gene from Mycobacterium fortuitum has recently been described. The aac(2 ' )-Ib gene is chromosomally encoded and is present in all isolates of M. fortuitum . The presence of this gene in other mycobacterial species is studied here and genes homologous to that of M. fortuitum have been found in all mycobacterial species studied. In this report, the cloning of the aac(2 ' )-Ic gene from M. tuberculosis H37Rv and the aac(2 ' )-Id gene from M. smegmatis mc2155 is described. Southern blot hybridizations have shown that both genes are present in all strains of this species studied to date. In addition, the putative aac(2 ' )-Ie gene has been located in a recent release of the Mycobacterium leprae genome. The expression of the aac(2 ' )-Ic and aac(2 ' )-Id genes has been studied in M. smegmatis and only aac(2 ' )-Id is correlated with aminoglycoside resistance. In order to elucidate the role of the aminoglycoside 2'- N -acetyltransferase genes in mycobacteria and to determine whether they are silent resistance genes or whether they have a secondary role in mycobacterial metabolism, the aac(2 ' )-Id gene from M. smegmatis has been disrupted in the chromosome of M. smegmatis mc2155. The disruptant shows an increase in aminoglycoside susceptibility along with a slight increase in the susceptibility to lysozyme.  相似文献   

19.
Mycobacterium tuberculosis FurA autoregulates its own expression   总被引:4,自引:0,他引:4       下载免费PDF全文
The furA-katG region of Mycobacterium tuberculosis, encoding a Fur-like protein and the catalase-peroxidase, is highly conserved among mycobacteria. Both genes are induced upon oxidative stress. In this work we analyzed the M. tuberculosis furA promoter region. DNA fragments were cloned upstream of the luciferase reporter gene, and promoter activity in Mycobacterium smegmatis was measured in both the presence and absence of oxidative stress. The shortest fragment containing an inducible promoter extends 45 bp upstream of furA. In this region, -35 and -10 promoter consensus sequences can be identified, as well as a 23-bp AT-rich sequence that is conserved in the nonpathogenic but closely related M. smegmatis. M. tuberculosis FurA was purified and found to bind upstream of furA by gel shift analysis. A ca. 30-bp DNA sequence, centered on the AT-rich region, was essential for FurA binding and protected by FurA in footprinting analysis. Peroxide treatment of FurA abolished DNA binding. Three different AT-rich sequences mutagenized by site-directed mutagenesis were constructed. In each mutant, both M. tuberculosis FurA binding in vitro and pfurA regulation upon oxidative-stress in M. smegmatis were abolished. Thus, pfurA is an oxidative stress-responsive promoter controlled by the FurA protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号