首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Ca(2+) regulation of the Ca(2+) binding mitochondrial carriers for aspartate/glutamate (AGCs) is provided by their N-terminal extensions, which face the intermembrane space. The two mammalian AGCs, aralar and citrin, are members of the malate-aspartate NADH shuttle. We report that their N-terminal extensions contain up to four pairs of EF-hand motifs plus a single vestigial EF-hand, and have no known homolog. Aralar and citrin contain one fully canonical EF-hand pair and aralar two additional half-pairs, in which a single EF-hand is predicted to bind Ca(2+). Shuttle activity in brain or skeletal muscle mitochondria, which contain aralar as the major AGC, is activated by Ca(2+) with S(0.5) values of 280-350 nm; higher than those obtained in liver mitochondria (100-150 nm) that contain citrin as the major AGC. We have used aralar- and citrin-deficient mice to study the role of the two isoforms in heart, which expresses both AGCs. The S(0.5) for Ca(2+) activation of the shuttle in heart mitochondria is about 300 nm, and it remains essentially unchanged in citrin-deficient mice, although it undergoes a drastic reduction to about 100 nm in aralar-deficient mice. Therefore, aralar and citrin, when expressed as single isoforms in heart, confer differences in Ca(2+) activation of shuttle activity, probably associated with their structural differences. In addition, the results reveal that the two AGCs fully account for shuttle activity in mouse heart mitochondria and that no other glutamate transporter can replace the AGCs in this pathway.  相似文献   

2.
Aralar, the neuronal Ca(2+)-binding mitochondrial aspartate-glutamate carrier, has Ca(2+) binding domains facing the extramitochondrial space and functions in the malate-aspartate NADH shuttle (MAS). Here we showed that MAS activity in brain mitochondria is stimulated by extramitochondrial Ca(2+) with an S(0.5) of 324 nM. By employing primary neuronal cultures from control and aralar-deficient mice and NAD(P)H imaging with two-photon excitation microscopy, we showed that lactate utilization involves a substantial transfer of NAD(P)H to mitochondria in control but not aralar-deficient neurons, in agreement with the lack of MAS activity associated with aralar deficiency. The increase in mitochondrial NAD(P)H was greatly potentiated by large [Ca(2+)](i) signals both in control and aralar-deficient neurons, showing that these large signals activate the Ca(2+) uniporter and mitochondrial dehydrogenases but not MAS activity. On the other hand, small [Ca(2+)](i) signals potentiate the increase in mitochondrial NAD(P)H only in control but not in aralar-deficient neurons. We concluded that neuronal MAS activity is selectively activated by small Ca(2+) signals that fall below the activation range of the Ca(2+) uniporter and plays an essential role in mitochondrial Ca(2+) signaling.  相似文献   

3.
1. The synthesis and efflux of N-acetyl-l-aspartate from brain mitochondria of rats of different ages has been studied. 2. Brain mitochondrial State 3 (+ADP) respiration rate, using 10mm-glutamate and 2.5mm-malate as substrates, increases during the suckling period and reaches approx. 50% of the adult value at 17 days after birth [adult State 3 respiration rate=160+/-7ng-atoms of O/min per mg of mitochondrial protein(mean+/-s.d.; n=3)]. 3. The influence of 5mm-pyruvate or 10mm-dl-3-hydroxybutyrate on aspartate efflux from brain mitochondira from rats of different ages oxidizing glutamate and malate was studied. In all cases the aspartate efflux in State 3 was greater than in State 4, but, whereas the aspartate efflux in State 3 increased as the animals developed, that of State 4 showed only a small increase. However, the rate of aspartate efflux in the presence of pyruvate or 3-hydroxybutyrate as well as glutamate and malate was approx. 60-65% of that in the presence of glutamate and malate alone. 4. An inverse relationship between aspartate efflux and N-acetylaspartate efflux was observed with adult rat brain mitochondria oxidizing 10mm-glutamate and 2.5mm-malate in the presence of various pyruvate concentrations (0-5mm). 5. N-Acetylaspartate efflux by brain mitochondria of rats of different ages was studied in States 3 and 4, utilizing 5mm-pyruvate or 10mm-dl-3-hydroxybutyrate as acetyl-CoA sources. A similar pattern of increase during development was seen in State 3 for N-acetylaspartate efflux as for aspartate efflux (see point 3 above). Also only very small increases in N-acetylaspartate efflux occurred during development in State 4.6. Rat brain mitochondria in the presence of iso-osmotic N-acetylaspartate showed some swelling which was markedly increased in the presence of malate. 7. It is concluded that N-acetylaspartate may be synthesized and exported from both neonatal and adult rat brain mitochondria. It is proposed that the N-acetylaspartate is transported by the dicarboxylic acid translocase and may be an additional mechanism for mitochondrial/cytosolic carbon transport to that of citrate.  相似文献   

4.
beta-Methyleneaspartate, a specific inhibitor of aspartate aminotransferase (EC 2.6.1.1.), was used to investigate the role of the malate-aspartate shuttle in rat brain synaptosomes. Incubation of rat brain cytosol, "free" mitochondria, synaptosol, and synaptic mitochondria, with 2 mM beta-methyleneaspartate resulted in inhibition of aspartate aminotransferase by 69%, 67%, 49%, and 76%, respectively. The reconstituted malate-aspartate shuttle of "free" brain mitochondria was inhibited by a similar degree (53%). As a consequence of the inhibition of the aspartate aminotransferase, and hence the malate-aspartate shuttle, the following changes were observed in synaptosomes: decreased glucose oxidation via the pyruvate dehydrogenase reaction and the tricarboxylic acid cycle; decreased acetylcholine synthesis; and an increase in the cytosolic redox state, as measured by the lactate/pyruvate ratio. The main reason for these changes can be attributed to decreased carbon flow through the tricarboxylic acid cycle (i.e., decreased formation of oxaloacetate), rather than as a direct consequence of changes in the NAD+/NADH ratio. Malate/glutamate oxidation in "free" mitochondria was also decreased in the presence of 2 mM beta-methyleneaspartate. This is probably a result of decreased glutamate transport into mitochondria as a result of low levels of aspartate, which are needed for the exchange with glutamate by the energy-dependent glutamate-aspartate translocator.  相似文献   

5.
Aralar, the mitochondrial aspartate-glutamate carrier present in beta-cells, is a component of the malate-aspartate NADH shuttle (MAS). MAS is activated by Ca2+ in mitochondria from tissues with aralar as the only AGC isoform with an S0.5 of approximately 300 nm. We have studied the role of aralar and its Ca2+-binding EF-hand motifs in glucose-induced mitochondrial NAD(P)H generation by two-photon microscopy imaging in INS-1 beta-cells lacking aralar or expressing aralar mutants blocked for Ca2+ binding. Aralar knock-down in INS-1 beta-cell lines resulted in undetectable levels of aralar protein and complete loss of MAS activity in isolated mitochondria and in a 25% decrease in glucose-stimulated insulin secretion. MAS activity in mitochondria from INS-1 cells was activated 2-3-fold by extramitochondrial Ca2+, whereas aralar mutants were Ca2+ insensitive. In Ca2+-free medium, glucose-induced increases in mitochondrial NAD(P)H were small (1.3-fold) and unchanged regardless of the lack of aralar. In the presence of 1.5 mm Ca2+, glucose induced robust increases in mitochondrial NAD(P)H (approximately 2-fold) in cell lines with wild-type or mutant aralar. There was a approximately 20% reduction in NAD(P)H response in cells lacking aralar, illustrating the importance of MAS in glucose action. When small Ca2+ signals that resulted in extremely small mitochondrial Ca2+ transients were induced in the presence of glucose, the rise in mitochondrial NAD(P)H was maintained in cells with wild-type aralar but was reduced by approximately 50% in cells lacking or expressing mutant aralar. These results indicate that 1) glucose-induced activation of MAS requires Ca2+ potentiation; 2) Ca2+ activation of MAS represents a larger fraction of glucose-induced mitochondrial NAD(P)H production under conditions where suboptimal Ca2+ signals are associated with a glucose challenge (50 versus 20%, respectively); 3) inactivation of EF-hand motifs in aralar prevents activation of MAS by small Ca2+ signals. The results suggest a possible role for aralar and MAS in priming the beta-cell by Ca2+-mobilizing neurotransmitter or hormones.  相似文献   

6.
Despite its growing use as a radiological indicator of neuronal viability, the biological function of N-acetylaspartate (NAA) has remained elusive. This is due in part to its unusual metabolic compartmentalization wherein the synthetic enzyme occurs in neuronal mitochondria whereas the principal metabolizing enzyme, N-acetyl-L-aspartate amidohydrolase (aspartoacylase), is located primarily in white matter elements. This study demonstrates that within white matter, aspartoacylase is an integral component of the myelin sheath where it is ideally situated to produce acetyl groups for synthesis of myelin lipids. That it functions in this manner is suggested by the fact that myelin lipids of the rat optic system are well labeled following intraocular injection of [14C-acetyl]NAA. This is attributed to uptake of radiolabeled NAA by retinal ganglion cells followed by axonal transport and transaxonal transfer of NAA into myelin, a membrane previously shown to contain many lipid synthesizing enzymes. This study identifies a group of myelin lipids that are so labeled by neuronal [14C]NAA, and demonstrates a different labeling pattern from that produced by neuronal [14C]acetate. High performance liquid chromatographic analysis of the deproteinated soluble materials from the optic system following intraocular injection of [14C]NAA revealed only the latter substance and no radiolabeled acetate, suggesting little or no hydrolysis of NAA within mature neurons of the optic system. These results suggest a rationale for the unusual compartmentalization of NAA metabolism and point to NAA as a neuronal constituent that is essential for the formation and/or maintenance of myelin. The relevance of these findings to Canavan disease is discussed.  相似文献   

7.
Aralar1 and citrin are members of the subfamily of calcium-binding mitochondrial carriers and correspond to two isoforms of the mitochondrial aspartate/glutamate carrier (AGC). These proteins are activated by Ca2+ acting on the external side of the inner mitochondrial membrane. Although it is known that aralar1 is expressed mainly in skeletal muscle, heart and brain, whereas citrin is present in liver, kidney and heart, the precise tissue distribution of the two proteins in embryonic and adult tissues is largely unknown. We investigated the pattern of expression of aralar1 and citrin in murine embryonic and adult tissues at the mRNA and protein levels. In situ hybridization analysis indicates that both isoforms are expressed strongly in the branchial arches, dermomyotome, limb and tail buds at early embryonic stages. However, citrin was more abundant in the ectodermal components of these structures whereas aralarl had a predominantly mesenchymal localization. The strong expression of citrin in the liver was acquired postnatally, whereas the characteristic expression of aralar1 in skeletal muscle was detected at E18 and that in the heart began early in development (E11) and was preferentially localized to auricular myocardium in late embryonic stages. Aralar1 was also expressed in bone marrow, T-lymphocytes and macrophages, including Kupffer cells in the liver, indicating that this is the major AGC isoform present in the hematopoietic system. Both aralar1 and citrin were expressed in fetal gut and adult stomach, ovary, testis, and pancreas, but only aralar1 is enriched in lung and insulin-secreting beta cells. These results show that aralar1 is expressed in many more tissues than originally believed and is absent from hepatocytes, where citrin is the only AGC isoform present. This explains why citrin deficiency in humans (type II citrullinemia) only affects the liver and suggests that aralar1 may compensate for the lack of citrin in other tissues.  相似文献   

8.
The mitochondrial aspartate/glutamate carrier catalyzes an important step in both the urea cycle and the aspartate/malate NADH shuttle. Citrin and aralar1 are homologous proteins belonging to the mitochondrial carrier family with EF-hand Ca(2+)-binding motifs in their N-terminal domains. Both proteins and their C-terminal domains were overexpressed in Escherichia coli, reconstituted into liposomes and shown to catalyze the electrogenic exchange of aspartate for glutamate and a H(+). Overexpression of the carriers in transfected human cells increased the activity of the malate/aspartate NADH shuttle. These results demonstrate that citrin and aralar1 are isoforms of the hitherto unidentified aspartate/glutamate carrier and explain why mutations in citrin cause type II citrullinemia in humans. The activity of citrin and aralar1 as aspartate/glutamate exchangers was stimulated by Ca(2+) on the external side of the inner mitochondrial membrane, where the Ca(2+)-binding domains of these proteins are localized. These results show that the aspartate/glutamate carrier is regulated by Ca(2+) through a mechanism independent of Ca(2+) entry into mitochondria, and suggest a novel mechanism of Ca(2+) regulation of the aspartate/malate shuttle.  相似文献   

9.
Control of reversible intracellular transfer of reducing potential.   总被引:1,自引:0,他引:1  
Isolated rat liver mitochondria were incubated in the presence of a reconstituted malate-aspartate shuttle under carboxylating conditions in the presence of glutamate, octanoyl-carnitine and pyruvate, or a preset lactate/pyruvate ratio. The respiration and attendant energy state were varied with soluble F1-ATPase. Under these conditions reducing equivalents are exported due to pyruvate carboxylation. This was shown by lactate production from pyruvate and by a substantial increase in the lactate/pyruvate ratio. This led to a competition between malate export and energy-driven malate cycling via the malate-aspartate shuttle, resulting in a lowered redox segregation of the NAD systems between the mitochondrial and extramitochondrial spaces. If pyruvate carboxylation was blocked, this egress of reducing equivalents was also blocked, leading to an elevated value of redox segregation, delta G(redox) (in kJ) = -5.7 log(NAD+/NADHout)/(NAD+/NADHin) being then equal to approximately one-half of the membrane potential, in accordance with electrogenic glutamate/aspartate exchange. Reconstitution of malate-pyruvate cycling led to a further kinetic decrease in the original malate-aspartate shuttle-driven value of delta G(redox). Therefore, the value of segregation of reducing potential between mitochondria and cytosol caused by glutamate/aspartate exchange can be diminished kinetically by processes exporting reducing equivalents from mitochondria, such as pyruvate carboxylation and pyruvate cycling.  相似文献   

10.
We present unexpected and novel results revealing that glutamate-dependent oxidative phosphorylation (OXPHOS) of brain mitochondria is exclusively and efficiently activated by extramitochondrial Ca2+ in physiological concentration ranges (S0.5 = 360 nM Ca2+). This regulation was not affected by RR, an inhibitor of the mitochondrial Ca2+ uniporter. Active respiration is regulated by glutamate supply to mitochondria via aralar, a mitochondrial glutamate/aspartate carrier with regulatory Ca2+-binding sites in the mitochondrial intermembrane space providing full access to cytosolic Ca2+. At micromolar concentrations, Ca2+ can also enter the intramitochondrial matrix and activate specific dehydrogenases. However, the latter mechanism is less efficient than extramitochondrial Ca2+ regulation of respiration/OXPHOS via aralar. These results imply a new mode of glutamate-dependent OXPHOS regulation as a demand-driven regulation of mitochondrial function. This regulation involves the mitochondrial glutamate/aspartate carrier aralar which controls mitochondrial substrate supply according to the level of extramitochondrial Ca2+.  相似文献   

11.
Intense glucose-based energy metabolism and glutamate synthesis by astrocytes require malate–aspartate-shuttle (MAS) activity to regenerate NAD+ from NADH formed during glycolysis, since brain lacks significant glycerophosphate shuttle activity. Aralar is a necessary aspartate/glutamate exchanger for MAS function in brain. Based on cytochemical immunoassays the absence of aralar in adult astrocytes was repeatedly reported. This would mean that adult astrocytes must regenerate NAD+ by producing lactate from pyruvate, eliminating its use by oxidative and biosynthetic pathways. We alternatively used astrocytes and neurons from adult brain, freshly isolated by fluorescence-activated cell sorting, to determine aralar protein by a specific antibody and its mRNA by real-time PCR. Both protein and mRNA expressions were identical in adult neurons and astrocytes and similar to whole brain levels. The same level of aralar expression was reached in well-differentiated astrocyte cultures, but not until late development, coinciding with the late-maturing brain capability for glutamate formation and degradation.  相似文献   

12.
Intense glucose-based energy metabolism and glutamate synthesis by astrocytes require malate–aspartate-shuttle (MAS) activity to regenerate NAD+ from NADH formed during glycolysis, since brain lacks significant glycerophosphate shuttle activity. Aralar is a necessary aspartate/glutamate exchanger for MAS function in brain. Based on cytochemical immunoassays the absence of aralar in adult astrocytes was repeatedly reported. This would mean that adult astrocytes must regenerate NAD+ by producing lactate from pyruvate, eliminating its use by oxidative and biosynthetic pathways. We alternatively used astrocytes and neurons from adult brain, freshly isolated by fluorescence-activated cell sorting, to determine aralar protein by a specific antibody and its mRNA by real-time PCR. Both protein and mRNA expressions were identical in adult neurons and astrocytes and similar to whole brain levels. The same level of aralar expression was reached in well-differentiated astrocyte cultures, but not until late development, coinciding with the late-maturing brain capability for glutamate formation and degradation.  相似文献   

13.
Jon Bremer  E.Jack Davis 《BBA》1975,376(3):387-397
1. The effects of mitochondrial energy states on the extramitochondrial NADH/NAD ratio via a reconstituted malate-aspartate shuttle have been investigated.

2. The transfer of reducing equivalents into isolated mitochondria is stimulated by ATP and by electron transport. The effect of ATP is inhibited by oligomycin. The effect of electron transport is inhibited by uncouplers.

3. Uncoupling of the mitochondria is required for rapid transfer of reducing equivalents out of the mitochondria.

4. A glutamate-stimulated entry of aspartate into energized mitochondria suggests that the malate-aspartate shuttle is to some extent reversible even in a high energy state of the mitochondria.

5. It is concluded that the malate-aspartate shuttle contributes to the formation of the skewed redox situation across the inner mitochondrial membrane, which has a more reduced inside.  相似文献   


14.
The growing use of N-acetylaspartate as an indicator of neuronal viability has fostered interest in the biological function(s) of this unusual amino acid derivative. In considering the various physiological roles that have been proposed for this relatively abundant molecule one is obliged to take into account its unusual metabolic compartmentalization, according to which synthesis and storage occur in the neuron and hydrolytic cleavage in the oligodendrocyte. The latter reaction, catalyzed by aspartoacylase (ASPA), produces acetyl groups plus aspartate and has been proposed to occur in both soluble and membranous subfractions of white matter. Our study supports such bimodal occurrence and we now present immunoblot, proteomic, and biochemical evidence that the membrane-bound form of ASPA is intrinsic to purified myelin membranes. This was supported by a novel TLC-based method for the assay of ASPA. That observation, together with previous demonstrations of numerous lipid-synthesizing enzymes in myelin, suggests utilization of acetyl groups liberated by myelin-localized ASPA for lipid synthesis within the myelin sheath. Such synthesis might be selective and could explain the deficit of myelin lipids in animals lacking ASPA.  相似文献   

15.
Effects of chronic alcohol treatment have been investigated on the rates of extramitochondrial NADH utilization by hepatic mitochondria in the presence or absence of “malate-aspartate shuttle,” oxidation of ethanol, α-glycerophosphate, and the activity of succinic dehydrogenase, along with the changes in the intrahepatic distribution of aspartate aminotransferase. The rates of blood alcohol clearance, hepatic alcohol dehydrogenase activity, and NADPH-dependent microsomal ethanol oxidation were also studied after different time intervals of alcohol withdrawal from chronically alcohol-fed animals. Hepatic mitochondria from chronically ethanol-fed mice (ethanol withheld 20 hr before sacrifice) utilized extramitochondrial NADH at rates 25–40% higher than the corresponding pair-fed controls. Addition of malateaspartate shuttle components to mitochondria from control and ethanol-fed groups resulted in 70 and 90% stimulation of NADH utilization, respectively. Mitochondria from both groups showed respiratory control upon ADP addition (state 3). Preincubation with amino-oxyacetate or hydrazine, which inhibit aspartate aminotransferase activity, prevented the stimulatory effect of malate-aspartate shuttle on NADH utilization. Mitochondria from livers of chronic ethanol-fed mice in the presence of reconstituted malate-aspartate shuttle showed 30–40% higher utilization of ethanol than the corresponding pair-fed control animals. The rate of mitochondrial α-glycerophosphate utilization by alcohol-fed animals was significantly higher than the control group. Succinic dehydrogenase activity measured as an index of mitochondrial permeability in the absence of Ca2+ showed 85% higher activity in alcoholtreated group than the control animals. Chronic ethanol feeding for 4 weeks resulted in an increase in the activity of hepatic aspartate aminotransferase in the cytoplasmic fraction and a corresponding decrease in the mitochondrial fraction. Alcohol withdrawal from chronic alcohol-fed animals resulted in a decrease in the blood alcohol clearance rate after 10 days. Furthermore, a lack of correlation was observed between the rates of blood alcohol clearance and the activity of hepatic alcohol dehydrogenase on one hand, and between the rates of blood alcohol clearance and the microsomal ethanol-oxidizing activity on the other.  相似文献   

16.
1. The effects of mitochondrial energy states onthe extramitochondrial NADH/NAD ratio via a reconstituted malate-aspartate shuttle have been investigated. 2. The transfer of reducing equivalents into isolated mitochondria is stimulated by ATP and by electron transport. The effect of ATP is inhibited by oligomycin. The effect of electron transport is inhibited by uncouplers. 3. Uncoupling of the mitochondria is required for rapid transfer of reducing equivalents out of the mitochondria. 4. A glutamate-stimulated entry of aspartate into energized mitochondria suggests that the malate-aspartate shuttle is to some extent reversible even in a high energy state of the mitochondria. 5. It is concluded that the malate-aspartate shuttle contributes to the formation of the skewed redox situation across the inner mitochondrial membrane, which has a more reduced inside.  相似文献   

17.
The purpose of this study was to understand the nature of the causes underlying the senescence-related decline in skeletal muscle mass and performance. Protein and lipid oxidative damage to upper hindlimb skeletal muscle mitochondria was compared between mice fed ad libitum and those restricted to 40% fewer calories—a regimen that increases life span by 30–40% and attenuates the senescence-associated decrement in skeletal muscle mass and function. Oxidative damage to mitochondrial proteins, measured as amounts of protein carbonyls and loss of protein sulfhydryl content, and to mitochondrial lipids, determined as concentration of thiobarbituric acid reactive substances, significantly increased with age in the ad libitum-fed (AL) C57BL/6 mice. The rate of superoxide anion radical generation by submitochondrial particles increased whereas the activities of antioxidative enzymes superoxide dismutase, catalase, and glutathione peroxidase in muscle homogenates remained unaltered with age in the AL group. In calorically-restricted (CR) mice there was no age-associated increase in mitochondrial protein or lipid oxidative damage, or in superoxide anion radical generation. Crossover studies, involving the transfer of 18- to 22-month-old mice fed on the AL regimen to the CR regimen, and vice versa, indicated that the mitochondrial oxidative damage could not be reversed by CR or induced by AL feeding within a time frame of 6 weeks. Results of this study indicate that mitochondria in skeletal muscles accumulate significant amounts of oxidative damage during aging. Although such damage is largely irreversible, it can be prevented by restriction of caloric intake.  相似文献   

18.
Thyroid hormone is a major regulator of metabolism and mitochondrial function. Thyroid hormone also affects reactions in almost all pathways of lipids metabolism and as such is considered as the main hormonal regulator of lipid biogenesis. The aim of this study was to explore the possible involvement of p43, a 43 Kda truncated form of the nuclear thyroid hormone receptor TRα1 which stimulates mitochondrial activity. Therefore, using mouse models overexpressing p43 in skeletal muscle (p43-Tg) or lacking p43 (p43?/?), we have investigated the lipid composition in quadriceps muscle and in mitochondria. Here, we reported in the quadriceps muscle of p43?/? mice, a fall in triglycerides, an inhibition of monounsaturated fatty acids (MUFA) synthesis, an increase in elongase index and an decrease in desaturase index. However, in mitochondria from p43?/? mice, fatty acid profile was barely modified. In the quadriceps muscle of p43-Tg mice, MUFA content was decreased whereas the unsaturation index was increased. In addition, in quadriceps mitochondria of p43-Tg mice, we found an increase of linoleic acid level and unsaturation index. Last, we showed that cardiolipin content, a key phospholipid for mitochondrial function, remained unchanged both in quadriceps muscle and in its mitochondria whatever the mice genotype. In conclusion, this study shows that muscle lipid content and fatty acid profile are strongly affected in skeletal muscle by p43 levels. We also demonstrate that regulation of cardiolipin biosynthesis by the thyroid hormone does not imply p43.  相似文献   

19.
The malate-aspartate NADH shuttle in mammalian cells requires the activity of the mitochondrial aspartate-glutamate carrier (AGC). Recently, we identified in man two AGC isoforms, aralar1 and citrin, which are regulated by calcium on the external face of the inner mitochondrial membrane. We have now identified Agc1p as the yeast counterpart of the human AGC. The corresponding gene was overexpressed in bacteria and yeast mitochondria, and the protein was reconstituted in liposomes where it was identified as an aspartate-glutamate transporter from its transport properties. Furthermore, yeast cells lacking Agc1p were unable to grow on acetate and oleic acid, and had reduced levels of valine, ornithine and citrulline; in contrast they grew on ethanol. Expression of the human AGC isoforms can replace the function of Agc1p. However, unlike its human orthologues, yeast Agc1p catalyses both aspartate-glutamate exchange and substrate uniport activities. We conclude that Agc1p performs two metabolic roles in Saccharomyces cerevisiae. On the one hand, it functions as a uniporter to supply the mitochondria with glutamate for nitrogen metabolism and ornithine synthesis. On the other, the Agc1p, as an aspartate-glutamate exchanger, plays a role within the malate-aspartate NADH shuttle which is critical for the growth of yeast on acetate and fatty acids as carbon sources. These results provide strong evidence of the existence of a malate-aspartate NADH shuttle in yeast.  相似文献   

20.
Enara Aguirre 《BBA》2010,1797(10):1716-1115
The lipid peroxidation product 4-hydroxynonenal (HNE) increases the proton conductance of the inner mitochondrial membrane through effects on uncoupling proteins (UCPs) and the adenine nucleotide translocase (ANT); however, the relative contribution of the two carriers to these effects is unclear. To clarify this we isolated mitochondria from skeletal muscle and heart of wild-type and Ucp3 knockout (Ucp3KO) mice. To increase UCP3 expression, some mice were i.p. injected with LPS (12 mg/kg body weight). In spite of the increased UCP3 expression levels, basal proton conductance did not change. HNE increased the proton conductance of skeletal muscle and heart mitochondria. In skeletal muscle, this increase was lower in Ucp3KO mice and higher in LPS-treated wild-type mice, and was partially abolished by GDP (UCPs inhibitor) and completely abolished by carboxyatractylate (ANT inhibitor) or addition of both inhibitors. GDP had no effect on HNE-induced conductance in heart mitochondria, but carboxyatractylate or administration of both inhibitors had a partial effect. GDP-mediated inhibition of HNE-activated proton conductance in skeletal muscle mitochondria was not observed in Ucp3KO mice, indicating that GDP is specific for UCP3, at least in muscle. Carboxyatractylate was able to inhibit UCP3, probably through an indirect mechanism. Our results are consistent with the conclusion that, in skeletal muscle, HNE-induced increase in proton conductance is mediated by UCP3 (30%) and ANT, whereas in the heart the increase is mediated by ANT and other carriers, possibly including UCP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号