首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Hepatocytes from starved rats were incubated with 5mm-glucose, labelled uniformly with (14)C and specifically with (3)H at positions 1, 2, 3 or 6, and with fructose at concentrations of 2.5, 7.5 or 25mm. 2. In the absence of other substrates only 1% of the radioactivity initially present in [U-(14)C]glucose appeared in the metabolic products, CO(2), lactate, pyruvate, amino acids and glycogen. 3. Fructose at 2.5mm caused a 30% increase in the glucose concentration and a 4-fold increase in the apparent oxidation of [U-(14)C]-glucose. 4. The formation of (3)H(2)O from [1-(3)H]-, [2-(3)H]-, [3-(3)H]- or [6-(3)H]-glucose was 2.4, 4.3, 2.15 or 1.6% respectively in the control incubations and 4.1, 10.4, 7.7 or 5.1% with 2.5mm-fructose. 5. Fructose at 7.5 and 25mm decreased the (3)H(2)O yields to less than the control values, but had no apparent effect on the amount of [U-(14)C]glucose metabolized. 6. In the incubations with 5mm-glucose and 25mm-fructose there were significant decreases in heat production, O(2) consumption and in the ratio of O(2) uptake to heat output. 7. Fructose at 2.5mm caused a 64% increase in heat output, but only a 43% increase in O(2) uptake. 8. The radioisotopic and calorimetric data demonstrate that physiological concentrations of fructose greatly increase metabolism in hepatocytes from starved rats. These data also indicate increased cycling at glucose/glucose 6-phosphate and at fructose 6-phosphate/fructose 1,6-bisphosphate in the presence of 2.5mm-fructose, although the rates of cycling were actually decreased relative to the amount of glucose catabolized. 9. At concentrations of 2.5, 7.5 and 25mm, fructose depressed hepatocyte ATP concentrations by 20, 65 and 80% respectively. Although fructose at 7.5 and 25mm increased glucose and lactate release, O(2) consumption, production of heat and formation of(3)H(2)O from [1-(3)H]-, [2-(3)H]-, [3-(3)H]- or [6-(3)H]-glucose were lowered to values equal to, or less than, controls. These effects probably reflect a severe derangement of hepatic metabolism due to excess phosphorylation of fructose when present at high concentrations.  相似文献   

2.
Gluconeogenesis from lactate in the developing rat. Studies in vivo   总被引:5,自引:5,他引:0       下载免费PDF全文
1. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose, liver glycogen and skeletal-muscle glycogen were measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into 2-, 10- and 30-day-old rats. 2. Between 15 and 60min after the injection of the l-[U-(14)C]lactate, the specific radioactivity of plasma lactate decreased with a half-life of 20-33min in animals at all three ages. 3. At all times after injection examined, the specific radioactivity of plasma glucose of the 2- and 10-day-old rats was at least fourfold greater than that of the 30-day-old rats. 4. Although (14)C was incorporated into liver glycogen the amount incorporated was always less than 5% of that present in plasma glucose. 5. The results are discussed with reference to the factors that may influence the rate of incorporation of (14)C into plasma glucose, and it is concluded that the rate of gluconeogenesis in the 2- and 10-day-old suckling rat is at least twice that of the weaned 30-day-old animal.  相似文献   

3.
Glucose metabolism in the developing rat. Studies in vivo   总被引:10,自引:10,他引:0  
1. The specific radioactivity of plasma d-glucose and the incorporation of (14)C into plasma l-lactate, liver glycogen and skeletal-muscle glycogen was measured as a function of time after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn, 2-, 10- and 30-day-old rats. 2. The log of the specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the 2-, 10- and 30-day-old rats decreased linearly with time for at least 60min after injection of labelled glucose. The specific radioactivity of both plasma d-[6-(14)C]- and d-[6-(3)H]-glucose of the newborn rat remained constant for at least 75min after injection. 3. The glucose turnover rate of the 30-day-old rat was significantly greater than (approximately twice) that of the 2- and 10-day-old rats. The relative size of both the glucose pool and the glucose space decreased with age. Less than 10% of the glucose utilized in the 2-, 10- and 30-day-old rats was recycled via the Cori cycle. 4. The results are discussed in relationship to the availability of dietary glucose and other factors that may influence glucose metabolism in the developing rat.  相似文献   

4.
Glucose metabolism in the newborn rat. Temporal studies in vivo   总被引:14,自引:12,他引:2       下载免费PDF全文
1. The concentrations of plasma d-glucose, l-lactate, free fatty acids and ketone bodies and of liver glycogen were measured in caesarian-delivered newborn rats at time-intervals up to 4h after delivery. Glucose and lactate concentrations decreased markedly during the first hours after delivery, but there was a delay of 60-90min before significant glycogen mobilization occurred. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into caesarian-delivered rats at 0, 1 and 2h after delivery. Calculations revealed that there was an appreciable rate of glucose formation at all ages studied, but immediately after delivery this was exceeded by the rate of glucose utilization. Around 2h post partum the rate of glucose utilization decreased dramatically and this coincided with a reversal of the immediately postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose and liver glycogen was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into rats immediately after delivery. The logarithm of the specific radioactivity of plasma l-[U-(14)C]lactate decreased linearly with time for at least 60min after injection and the calculated rate of lactate utilization exceeded the rate of lactate formation. 4. (14)C incorporation into plasma d-glucose was maximal from 30-60min after injection of l-[U-(14)C]lactate and the amount incorporated at 60min was 23% of that present in plasma lactate. Although (14)C was also incorporated into liver glycogen the amount was always less than 3% of that present in plasma glucose. 5. The results are discussed in relationship to the adaptation of the newly born rat to the extra-uterine environment and the possible involvement of gluconeogenesis at this time before feeding is established.  相似文献   

5.
1. Glucose labelled with (3)H in position 2 and uniformly with (14)C was administered simultaneously to rabbits and rats either as a single injection or by continuous infusion. Plasma glucose specific radioactivity and the yield of (3)H in the plasma water were monitored. 2. The rates of synthesis, recycling of carbon and total body mass of glucose were calculated, without assuming a multicompartmental model and without fitting data by exponential expressions. 3. The rate of synthesis of glucose in starved-overnight rabbits was 4mg/min per kg (range 3-4.5mg/min per kg) and 25-35% of the glucose carbon was recycled. The mass of total body glucose in starved rabbits was 290mg/kg (range 220-390mg/kg). About one-third of the total body glucose equilibrates nearly instantaneously with plasma glucose. 4. In rats starved overnight, glucose synthesis was about 10mg/min per kg and recycling of carbon ranged from 30-40%. Total body mass (per kg body weight) is similar to that in rabbits. 5. The activity in plasma water after injection of [2-(3)H]glucose was determined. The initial rate of (3)H(2)O formation is rapid, indicating that the major site of glucose catabolism is in the rapidly mixing pool. The curve of total body glucose radioactivity was obtained from the (3)H(2)O yield, and total mass of glucose was calculated. This agrees with that obtained from the (3)H specific-radioactivity curve.  相似文献   

6.
1. A trace amount of glucose labelled with 14C uniformly and with 3H at position 2, 3 or 6 was injected intravenously into starved rats to measure the turnover rate of blood glucose. 2. Reliable estimates were made based on the semilogarithmic plot of specific radioactivity of the glucose contained in whole blood samples taken from the tail vein. 3. Glucose turned over more rapidly in hyperthyroid and more slowly in hypothyroid than in euthyroid rats. The percentage contribution of glucose recycling (determined from the difference in replacement rates between [U-14C]glucose and [6-3H]glucose) to the glucose utilization increased on induction of hyperthyroidism. 4. Futile cycles between glucose and glucose 6-phosphate (determined from the difference between replacement rates of [2-3H]glucose and [6-3H]glucose) were activated and inactivated by induction of hyperthyroid and hypothyroid states respectively. 5. The hepatic content of glycogen was much lower in hyper- and hypo-thyroid than in euthyroid rats. The enhanced glucose production in hyperthyroid rats resulted from not only activationof hepatic gluconeogenesis but also diversion of the final product of gluconeogenesis from liver glycogen to blood glucose. In hypothyroidism, the inhibition of gluconeogensis led to suppression of both glucose production and glycogenesis in the liver.  相似文献   

7.
A method for the determination of substrate flux through the pentose cycle was developed employing [1-14C]glucose in experiments with perfused rat livers. The method consists first of a kinetic analysis which differentiates between the production of 14CO2 from [1-14C]glucose via the pentose cycle and via the citrate cycle and, second of a calculation of the specific radioactivity of the hexose monophosphate pool from measured rates of glycolysis and the specific radioactivity of lactate released into the perfusate. The method was validated by experiments comparing the results of tracer infusions with [1-14C]glucose, [6-14C]glucose and [3-14C]pyruvate. In livers from fed rats perfused with 10 mM glucose, the rate of substrate flux through the pentose cycle was around 0.2 mumol X min-1 X g-1; it was about 20% of the substrate flux via glycolysis. The kinetic data were inconsistent with the existence of an L-type pentose cycle in liver.  相似文献   

8.
Glucose metabolism in the newborn rat. Hormonal effects in vivo   总被引:3,自引:1,他引:2       下载免费PDF全文
1. The concentrations of liver glycogen and plasma d-glucose were measured in caesarian-delivered newborn rats at time-intervals up to 3h after delivery after treatment of the neonatal rats with glucagon, dibutyryl cyclic AMP, cortisol or cortisol+dibutyryl cyclic AMP. Glycogenolysis was promoted by glucagon or dibutyryl cyclic AMP in the third hour after birth but not at earlier times. Cortisol and dibutyryl cyclic AMP together (but neither agent alone) promoted glycogenolysis in the second hour after birth, but no hormone combination was effective in the first postnatal hour. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75 min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn rats at delivery and after treatment with glucagon or actinomycin D. Glucagon-mediated hyperglycaemia at this time was due to an increased rate of glucose formation and a decreased rate of glucose utilization. Actinomycin D prevented glucose formation and accelerated the rate of postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into glucagon- or actinomycin D-treated rats immediately after delivery. The calculated rates of lactate formation were unchanged by either treatment, but lactate utilization was stimulated by glucagon administration. Glucagon stimulated and actinomycin D diminished (14)C incorporation into plasma d-glucose. 4. The factors involved in the initiation of glycogenolysis and gluconeogenesis in the rat immediately after birth are discussed.  相似文献   

9.
The present investigation was designed to study the uptake of67Cu when administered directly, into the portal vein, along with either functose or glucose, by the liver and extrahepatic tissues. Following weaning, male Sprague-Dawley rats were fed for 3 wk either commercial laboratory ration (chow) or semipurified diets deficient in Cu (0.6 ppm) or supplemented with Cu (6.0 ppm) and containing 62% carbohydrate as either fructuse or cornstarch. After an overnight fast, a single dose of rat plasma (0.1 mL) containing fructose or glucose extrinsically labeled with67Cu was injected directly into their portal vein. Although not always statistically significant, rats fed chow retained more radioactivity in the liver and several extrahepatic tissues when67Cu was administered with fructose than with glucose. Regardless of Cu status, rats fed diets containing fructose retained more radioactivity in extrahepatic tissues than rats fed starch. There was an increased uptake of67Cu by the liver, blood, muscle, and fat pad when fructose as compared to glucose was injected in combination with the isotope. These data strongly suggest that Cu requirements or utilization are greater when fructose is the main dietary carbohydrate. The results may also in part explain the reason for the increased severity of Cu deficiency in rats fed fructose.  相似文献   

10.
L-[U-14C]Threonine was infused at a steady rate to non-anaesthetized rats starved for 1 or 3 days and to diabetic rats starved for 1 day. The rates of turnover of threonine, calculated from the equilibrium specific radioactivity (SA) of plasma threonine, were 5.79 +/- 1.00, 11.67 +/- 1.43 and 13.35 +/- 1.85 mumol/min per kg body wt. in 1-day-starved, 3-day-starved and diabetic rats respectively. The calculated turnover rate of threonine agreed well with the rate expected from the rate of protein turnover reported in the literature. The equilibrium SA of plasma alanine was 5.1-9.8% of that of threonine in the three groups of rats. The equilibrium SA of glucose was 1.42 and 2.90% of that of threonine in 1-day- and 3-day-starved rats respectively. From the non-equilibrium SA of glucose, it is estimated that a higher percentage of 14C atoms is transferred from threonine to glucose in diabetic than in non-diabetic rats. In spite of increases in gluconeogenesis from threonine in long-starved or diabetic rats, we conclude that threonine remains a minor contributor to plasma glucose. Since it is an essential amino acid, its turnover and contribution to the formation of plasma glucose is an index of catabolism and gluconeogenesis from tissue protein.  相似文献   

11.
Contribution of propionate to glucose synthesis in sheep   总被引:7,自引:7,他引:0       下载免费PDF全文
1. The production rate of propionate in the rumen and the entry rate of glucose into the body pool of glucose in sheep were measured by isotope-dilution methods. Propionate production rates were measured by using a continuous infusion of specifically labelled [(14)C]propionate. Glucose entry rates were estimated by using either a primed infusion or a continuous infusion of [U-(14)C]glucose. 2. The specific radioactivity of plasma glucose was constant between 4 and 9hr. after the commencement of intravenous infusion of [U-(14)C]glucose and between 1 and 3hr. when a primed infusion was used. 3. Infusion of [(14)C]propionate intraruminally resulted in a fairly constant specific radioactivity of rumen propionate between about 4 and 9hr. and of plasma glucose between 6 and 9hr. after the commencement of the infusion. Comparison of the mean specific radioactivities of glucose and propionate during these periods allowed estimates to be made of the contribution of propionate to glucose synthesis. 4. Comparisons of the specific radioactivities of plasma glucose and rumen propionate during intraruminal infusions of one of [1-(14)C]-, [2-(14)C]-, [3-(14)C]- and [U-(14)C]-propionate indicated considerable exchange of C-1 of propionate on conversion into glucose. The incorporation of C-2 and C-3 of propionate into glucose and lactate indicated that 54% of both the glucose and lactate synthesized arose from propionate carbon. 5. No differences were found for glucose entry rates measured either by a primed infusion or by a continuous infusion. The mean entry rate (+/-s.e.m.) of glucose estimated by using a continuous infusion into sheep was 0.33+/-0.03 (4) m-mole/min. and by using a primed infusion was 0.32+/-0.01 (4) m-mole/min. The mean propionate production rate was 1.24+/-0.03 (8) m-moles/min. The conversion of propionate into glucose was 0.36 m-mole/min., indicating that 32% of the propionate produced in the rumen is used for glucose synthesis. 6. It was indicated that a considerable amount of the propionate converted into glucose was first converted into lactate.  相似文献   

12.
Glycogen synthesis in isolated hepatocytes can occur from glucose both by a direct mechanism and by an indirect process in which glucose is first metabolized to C3 intermediates before use for glycogenesis via gluconeogenesis. We studied the incorporation into glycogen of glucose and the gluconeogenic substrate, fructose, in primary cultures of hepatocytes from fasted rats. In the presence of insulin, both glucose and fructose promoted net deposition of glycogen; however, fructose carbon was incorporated into glycogen to a greater extent than that from glucose. When glucose and fructose were administered simultaneously, the glycogenic utilization of glucose was stimulated 2-3-fold, and that of fructose was increased by about 50%. At constant hexose concentrations, the total incorporation of carbon, and the total accumulation of glycogen mass, from glucose and fructose when present together exceeded that from either substrate alone. Fructose did not change the relative proportion of glucose carbon incorporated into glycogen via the indirect (gluconeogenic) mechanism. The synergism of glucose and fructose in glycogen synthesis in isolated rat hepatocytes in primary culture appears to result from a decrease in the rate of degradation of newly deposited glycogen, owing to (i) decreased amount of phosphorylase a mediated by glucose and (ii) noncovalent inhibition of residual phosphorylase activity by some intermediate arising from the metabolism of fructose, presumably fructose 1-phosphate.  相似文献   

13.
Abstract— The [14C]glucose incorporation rate into brain aspartate, glutamate, GABA and glutamine in rats deprived of total and paradoxical sleep was studied. The specific radioactivities of the isolated metabolites were related to the specific radioactivity of brain glucose. It was expected that the incorporation of radioactivity would reflect subtle changes occurring in brain amino acid metabolism during total and selective paradoxical sleep deprivation. The results show an increased specific radioactivity of glutamine in total sleep-deprived rats. The variation in specific radioactivity of glutamine without a change in its concentration indicates an increased turnover of this compound. The reasons and possible mechanism for the change in glutamine specific radioactivity are discussed.  相似文献   

14.
Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior. Specifically, long-term fructose bingeing activates a hyperphagic circuit composed in part of NAc shell and LH/PeF Orx neurons.  相似文献   

15.
The rate of appearance of unlabelled glucose was calculated from changes in plasma glucose specific radioactivity after a single intravenous injection of labelled glucose and compared with the actual constant infusion rate of unlabelled glucose into an anaesthetized dog with all sources of endogenous glucose production surgically removed. The mean steady-state rate of appearance of unlabelled glucose calculated from the area under the specific radioactivity versus time curve was 7% higher than the actual infusion rate (n = 4), but the difference was not statistically significant. The variability in the rate calculated in this manner was, however, greater than the variability we have reported with rates determined from a primed constant infusion of tracer. Using 15- to 60- or 60- to 120-min specific radioactivity data the mean rate of appearance of glucose, calculated on the assumption of a one-pool model for glucose turnover in vivo, was approximately 60% higher than the actual infusion rate. The results also indicate that it is possible to construct multi-pool models, but it is difficult to equate specific physiological events with the individual terms of the multi-experimental equation which describes the changes in plasma glucose specific radioactivity.  相似文献   

16.
1. Of the glucose in rat blood 79.8+/-3.3% (s.d.) was in the plasma. The variance was mostly due to differences between rats. 2. The concentration of glucose in erythrocyte water was 51+/-8% (s.d.) of that in plasma water. 3. The ratio (specific radioactivity in plasma)/(specific radioactivity in whole blood), i.e. the P/B ratio, was estimated for glucose at intervals after intravenous injection of [U-(14)C]glucose and [U-(14)C]fructose. The ratio differed from unity by more than the standard error of a single determination of the specific radioactivity of blood or plasma glucose except from 10 to 17min. after injection of [(14)C]glucose and from 22 to 30min. after injection of [(14)C]fructose. At all other times specific radioactivities in blood had to be corrected to give specific radioactivities in plasma. How to do so is described. 4. The P/B ratios were accounted for by a turnover of glucose in erythrocytes of 0.14mumole/min./ml. of erythrocytes. 5. Metabolism of glucose in rat erythrocytes is unlikely to be a major source of lactate.  相似文献   

17.
Uptake and metabolism of the physiologically labelled D-glucose (D-[U-14C]glucose) has been characterized in human adipocytes at several unlabelled D-glucose concentrations in the absence and presence of insulin. Following a 90 min incubation, about 80% of the intracellular radioactivity was incorporated into total lipids at tracer glucose concentration, as well as at higher glucose concentrations in basal and insulin-stimulated cells, whereas 20% was recovered as hydrophilic metabolites. The only 14C-labelled metabolite escaping the cells in detectable amounts was CO2, which accounted about 4%. At trace glucose concentrations (5 mumol/l), the rate of glucose uptake was linear with time. Comparative studies of initial glucose uptake after 10 s and tracer D-glucose conversion to total lipids after 90 min showed high coefficients of correlation between basal rates (r = 0.87), maximal response above basal level to insulin (r = 0.92) and insulin sensitivity (r = 0.78). Thus, under these conditions glucose transport is rate-limiting for net glucose uptake, and measurements over long time intervals of rates for total cell-associated radioactivity or lipogenesis may serve as reliable estimates of initial glucose influx rates. However, the conversion rate of tracer glucose to metabolites decreased progressively with the glucose concentration and with an apparent Km of about 0.2 mmol/l. The three metabolic pathways exhibited similar percentage decreases in their activities, suggesting that a common enzymatic step is rate-limiting. In comparison, the Km for initial D-glucose uptake rate was about 7 mmol/l. Hence, the capacity for total glucose metabolism comprised only a small fraction of the glucose transport capacity at medium glucose concentrations above tracer concentrations. Both basal, half-maximal and maximal insulin-stimulated rates of adipocyte glucose utilization were dependent on the glucose concentration. Thus, comparing lipogenesis at tracer and at 0.5 mmol/l medium glucose concentration, it was shown that the higher medium glucose concentration was associated with a 60% lowering of the basal rate, a 35% reduction in the percentage response above baseline to maximal insulin stimulation and a 4-fold increase in the insulin sensitivity. Obviously, these findings reflect some intracellular step(s) being rate-limiting at medium glucose levels above tracer values.  相似文献   

18.
Isolated rat hepatocytes were incubated with [3-(14)C]xylitol or d-[3-(14)C]xylulose plus xylitol or glucose at substrate concentrations. The glucose formed was isolated and degraded to give the relative specific radioactivities in each carbon atom. C-4 of glucose had the highest specific radioactivity, followed by C-3, with half to one-fifth that of C-4. Only about 1% of the total radioactivity was in C-1. The data are compared with the predictions of the classical pentose phosphate cycle [Horecker, Gibbs, Klenow & Smyrniotis (1954) J. Biol. Chem.207, 393-403], and the proposed new version of the pentose phosphate cycle in liver [Longenecker & Williams (1980) Biochem. J.188, 847-857], which they denoted as the ;L-type pentose cycle'. The Williams pathway predicts that the specific radioactivity of C-1 of glucose should be half that of C-4 (after correction for approximately equal labelling on C-3 and C-4 of hexose phosphate in the pathway involving fructose 1,6-bisphosphatase). The actual labelling in C-1 is 20-350-fold less than this. When the hepatocytes are incubated with phenazine methosulphate, to stimulate the oxidative branch of the pentose phosphate cycle, the predicted relationship between (C-2/C-3) and (C-1/C-3) ratios of specific radio-activities is nearly exactly in accord with the classical pentose phosphate cycle. Glucose and glucose 6-phosphate were isolated and degraded from an incubation of hepatocytes from starved/re-fed rats with [3-(14)C]xylitol. Although the patterns were of the classical type, there was more randomization of (14)C into C-2 and C-1 in the glucose 6-phosphate isolated at the end of the incubation than in the glucose which was continuously produced.  相似文献   

19.
Subcutaneous fat cells were isolated from genetically obese rats and from rats with obesity produced by hypothalamic lesions. Insulin did not augment the oxidation of fatty acids or their synthesis from glucose-1-(14)C or glucose-1-(3)H by fat cells from either group. Radioactivity from pyruvate-3-(14)C was incorporated into fatty acids to the same degree by fat cells from these two groups. The presence of 5 mm glucose in the incubation medium containing fat cells and pyruvate-3-(14)C or aspartate-3-(14)C stimulated the synthesis of fatty acids to a greater extent in cells of genetically obese rats. Fasting, in contrast, reduced the incorporation of radioactivity from pyruvate and glucose into fatty acids by fat cells from the genetically obese animals. In all experiments the fat cells from genetically obese rats converted more radioactivity into glyceride-glycerol relative to CO(2) than did fat cells from hypothalamic obese rats. Parabiosis between one thin and one genetically obese litter mate was performed in three pairs of rats without influencing growth of either rat. Thus in the present studies fat cells from genetically obese rats showed two differences from normal fat cells: they channeled more radioactivity from pyruvate into fatty acids in the presence of glucose, and they uniformly converted more radioactivity into glyceride-glycerol.  相似文献   

20.
Chronic feeding of fructose to normal rats causes impaired glucose tolerance, loss of tissue sensitivity to insulin, hyperinsulinemia and hypertension. -Lipoic acid (LA), a co-enzyme known for its potent antioxidant effects, stimulates insulin-mediated glucose uptake in clinical and experimental diabetes. The purpose of this study was to examine whether LA can mitigate fructose-induced insulin resistance and associated abnormalities. Male Wistar rats of body weights 150–170 g were divided into 4 groups containing 12 rats each. Control rats received a control diet containing starch and water ad libitum. Fructose rats received a fructose-enriched diet (>60% of total calories). Fructose + LA rats received a fructose diet and LA (35 mg/kg b.w.) intraperitoneally. Control + LA rats received a normal diet and LA (35 mg/kg b.w.) intraperitoneally. After the treatment period of 20 days, blood pressure (BP) was measured. Oral glucose-tolerance test, insulin-sensitivity index, urea and creatinine clearance tests, and plasma and urinary sodium and potassium levels were analysed. Kallikrein activity and nitrite content were assayed. Additionally, the activities of RBC-membrane Na+/K+ ATPase and Ca2+ ATPase enzymes were assayed. Fructose rats showed increased BP, decreased glucose tolerance, decreased insulin sensitivity and altered sodium and potassium levels and renal clearance. LA supplementation mitigated these alterations. The increase in BP was attenuated and the levels of biochemical parameters were brought close to normal. The BP-lowering effect of LA in fructose rats may be related to improvement in insulin sensitivity.Communicated by L.C.-H. Wang.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号