首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been suggested that ras proteins are involved in the transmembrane signaling mechanism and they share structural features with GTP-binding proteins. To identify the role of ras oncogene and it's products in the coupling mechanisms of GTP-binding proteins to adenylate cyclase, we examined effect of NaF, cholera toxin and forskolin in normal and v-Ki-ras transformed NIH/3T3 fibroblast cells. In transformants, adenylate cyclase activity was markedly enhanced by NaF and cholera toxin, in contrast to normal cells. It is suggested that ras oncogene proteins plays enhancing role in coupling of GTP-binding proteins to adenylate cyclase.  相似文献   

2.
To identify the role of ras oncogene and p21 in the coupling mechanism of GTP-binding proteins to adenylate cyclase, we used v-Ki-ras transformed NIH/3T3 fibroblast cells. In the previous study, we investigated that NaF, cholera toxin and forskolin remarkably enhanced the adenylate cyclase activity in transformed cells compared to normal NIH/3T3 cells. In the present study, adenylate cyclase was more enhanced by GTP gamma S in transformed cells than in normal cells. It was considered that p21 plays enhancing role in coupling of GTP-binding proteins to adenylate cyclase. Further, as measured by the degree of [32P] ADP-ribosylation of GTP-binding proteins by cholera toxin and pertussis toxin respectively, the amount of Gs (46 kDa) was almost equal in both cells, while the amount of Gi (41 kDa) in transformant was about one third of that in normal cells. This difference seems to be reflected in either the biological situations or the quantities of Gi. Our data suggest that v-Ki-ras transformation resulted in the decrease of Gi protein so that the inhibitory regulation on adenylate cyclase relatively becomes low and then stimulatory influence of Gs seems to be enhanced.  相似文献   

3.
A Levitzki  J Rudick  I Pastan  W C Vass  D R Lowy 《FEBS letters》1986,197(1-2):134-138
The observed homology between G-proteins which regulate adenylate cyclase and ras proteins and the suggested role of ras in the regulation of adenylate cyclase in yeast prompted us to examine the regulation of adenylate cyclase in three cell lines: (i) NIH 3T3 cells, (ii) NIH 3T3 cells transformed by high levels of the normal rasH gene product and (iii) NIH 3T3 cells transformed by a mutated rasH gene product. We found that the regulation of adenylate cyclase by G-proteins is identical in the three cell lines, although the response of the transformed NIH 3T3 cells to agonists is strongly attenuated. Our data suggest that mammalian ras products do not interact directly with adenylate cyclase, although their increased expression may indirectly inhibit the interaction of adenylate cyclase stimulatory receptors with G-proteins.  相似文献   

4.
Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased 45Ca2+ uptake into the cell monolayer, and (f) increased 86Rb+ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca2+ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca2+-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca2+ gating.  相似文献   

5.
Differentiation of 3T3-L1 cells from fibroblasts to adipocytes is accompanied by increased adenylate cyclase response to lipolytic agents. We used pertussis toxin and specific antibodies to measure the inhibitory guanine nucleotide-binding protein, Gi, and the novel G-protein, Go, in membranes from 3T3-L1 cells. Pertussis toxin-dependent labeling of a 39-40 kDa protein showed an initial 30% rise, followed by an 80% fall during differentiation. Immunoblots showed that 3T3-L1 cells contain Go, as well as Gi, and that changes in the former parallel the changes in pertussis toxin labeling. Changes in Gi and GO may contribute to altered adenylate cyclase response during 3T3-L1 cell differentiation.  相似文献   

6.
3T3-L1 preadipocytes, when treated with 3-isobutyl-1-methylxanthine, dexamethasone, and insulin, differentiate into cells with the morphological and biochemical properties of adipocytes; the closely related 3T3-C2 cells, under identical conditions, exhibit a low frequency of adipocyte conversion. During differentiation, 3T3-L1 preadipocytes acquire an increased responsiveness to certain agonists (e.g. isoproterenol and adrenocorticotropic hormone) that influence lipolysis and lipogenesis through activation of adenylate cyclase, whereas 3T3-C2 cells do not. It has been suggested that changes in hormone responsiveness of 3T3-L1 cells during differentiation result from increased amounts of the guanyl nucleotide-binding protein of adenylate cyclase, as demonstrated by choleragen-catalyzed [32P]ADP ribosylation of 42 and 49-50-kilodalton particulate peptides. Particulate fractions from nondifferentiating 3T3-C2 cells, like those from 3T3-L1 cells, contained choleragen substrates of 42 and 46-47 (doublet) kilodaltons. Incubation of intact 3T3-L1 or 3T3-C2 cells with choleragen prior to preparation of particulate fractions prevented the subsequent in vitro choleragen-dependent [32P]ADP ribosylation of only these peptides. Increased incorporation of radioactivity into both the 42 and 46-47-kilodalton peptides was observed during differentiation of 3T3-L1 cells. However, a similar increase was also observed in nondifferentiating 3T3-C2 cells subjected to the differentiation protocol. Therefore, increased hormone responsiveness of 3T3-L1 adipocytes cannot be explained solely on the basis of increased labeling, and perhaps increased amounts, of the guanyl nucleotide-binding protein.  相似文献   

7.
Guanine nucleotide regulation of membrane adenylate cyclase activity was uniquely modified after exposure of 3T3 mouse fibroblasts to low concentrations of islet-activating protein (IAP), pertussis toxin. The action of IAP, which occurred after a lag time, was durable and irreversible, and was associated with ADP-ribosylation of a membrane Mr = 41,000 protein. GTP, but not Gpp(NH)p, was more efficient and persistent in activating adenylate cyclase in membranes from IAP-treated cells than membranes from control cells. GTP and Gpp(NH)p caused marked inhibition of adenylate cyclase when the enzyme system was converted to its highly activated state by cholera toxin treatment or fluoride addition, presumably as a result of their interaction with the specific binding protein which is responsible for inhibition of adenylate cyclase. This inhibition was totally abolished by IAP treatment of cells, making it very likely that IAP preferentially modulates GTP inhibitory responses, thereby increasing GTP-dependent activation and negating GTP-mediated inhibition of adenylate cyclase.  相似文献   

8.
NIH-3T3 fibroblasts have been transfected with human serotonin 5-HT1A receptors. Clonal cell lines expressed between 40 and 500 fmol receptor/mg. 5-HT1A agonists strongly inhibited nonstimulated- as well as forskolin- or isoproterenol-stimulated adenylyl cyclase. The effects of 5-HT1A receptor activation on cell growth were investigated. 5-HT1A agonists accelerated cell division, generated foci, and increased DNA synthesis. The stimulation of [3H]thymidine incorporation was much stronger when tyrosine kinase receptors were activated concomitantly. Cyclic AMP (cAMP) elevating agents inhibited DNA synthesis induced by all mitogens tested. The mitogenic activity of 5-HT1A agonists did not seem to be linked to adenylyl cyclase inhibition because 1) we were not able to measure any decrease in intracellular cAMP levels under the conditions of DNA synthesis assay and 2) 2',5'-dideoxyadenosine, which strongly inhibited adenylyl cyclase, was not mitogenic and did not modify the mitogenic effects of 5-HT1A agonists. Pertussis toxin completely blocked potentiation of epidermal growth factor effect induced by 8-hydroxy-di-(n-propyl)aminotetralin, a 5-HT1A agonist, but only partially blocked the one induced by insulin. In conclusion, in transfected NIH-3T3 cells, transforming and mitogenic effects of 5-HT1A agonists involve a pertussis toxin-sensitive G protein but do not seem to be linked to adenylyl cyclase inhibition.  相似文献   

9.
10.
The complexion of the adenylate cyclase system and in particular, the regulation of G-proteins was examined in 3T3-L1 cells during differentiation from a fibroblast-like to an adipocyte-like phenotype. Gs alpha (the identified regulatory component of hormone-sensitive adenylate cyclase that mediates stimulation), measured by cholera toxin-catalyzed ADP-ribosylation, increased by approximately 6-fold from day 0 to day 8. Gs alpha, measured by functional reconstitution, increased in specific activity by approximately 3-fold from day 0 to day 8. Both Gi alpha (the G-protein with alpha-subunit Mr 40,000-41,000 whose function is in part the mediation of inhibition of adenylate cyclase) and Go alpha (the highly abundant G-protein first isolated from bovine brain whose effector system remains to be established) measured by pertussis toxin-catalyzed ADP-ribosylation increased by approximately 4-fold over this same period. 3T3-L1 cells possess beta-subunits of G-proteins displaying Mr = 36,000 (beta 36) and Mr = 35,000 (beta 35). The increase in the beta 35 as well as beta 36 subunits was approximately 2-fold. Using quantitative immunoblotting techniques and specific antisera, the total amount of beta-subunits was determined to be 150 as compared to 70 pmol/mg of membrane protein, while the amount of Go alpha was 40 and 10 pmol/mg of membrane protein in adipocytes and fibroblasts, respectively. Since Go alpha is the most abundant G-protein alpha-subunit observed to date in both phenotypes, the overall ratio of beta- to alpha-subunits of G-proteins appears to decrease from approximately 4.7 in fibroblasts to 2.5 in adipocytes. These data suggest that in differentiation not only is the complexion of G-proteins altered but more importantly, the relative amounts of alpha- to beta-subunits are regulated.  相似文献   

11.
In Swiss 3T3 murine fibroblasts, interleukin 1 (IL-1) and bradykinin stimulate prostaglandin E2 (PGE2) synthesis. However, in the present study, we found that neither agonist stimulated PGE2 synthesis in BALB/c 3T3 murine fibroblasts, this in spite of expression of similar numbers of receptors for each agonist compared to Swiss 3T3 cells. When BALB/c 3T3 cells were preincubated with cAMP analogs, both IL-1 and bradykinin stimulated PGE2 synthesis to levels similar to those observed in Swiss 3T3 cells. Similarly, when the cells were preincubated with forskolin, which activates the catalytic subunit of adenylate cyclase directly, or NECA, which stimulates cellular cAMP accumulation by activating adenosine receptors, IL-1 and bradykinin stimulated PGE2 synthesis. Rp-cAMPS, an inhibitor of cAMP-dependent protein kinase, blocked the ability of cAMP or NECA to render cells responsive to IL-1 and bradykinin. In basal BALB/c 3T3 cells, bradykinin and IL-1 stimulated arachidonate release in the absence of cAMP, but little conversion of released arachidonate to PGE2 occurred. cAMP, forskolin, and NECA all increased cyclooxygenase activity in the cells. SV-T2 is a clonal line originating from BALB/c 3T3 transformed with SV-40. In these cells, IL-1 and bradykinin stimulated PGE2 synthesis despite basal intracellular cAMP concentrations similar to BALB/c, and cAMP only modestly potentiated the response. In summary, cyclooxygenase expression appears to be regulated by cAMP in BALB/c 3T3 cells, and SV-40 transformation results in increased cyclooxygenase expression, apparently independent of cAMP.  相似文献   

12.
B Feve  J Pairault 《FEBS letters》1987,219(1):56-64
When 3T3-F442A preadipocytes were grown in culture media supplemented with corticosteroid poor fetal calf serum and insulin they differentiated into adipocytes. Glycerophosphate dehydrogenase, a marker of terminal differentiation, developed a 600-fold increase of activity whereas the adenylate cyclase system remained unresponsive to the synthetic ACTH(1-24) analog. In contrast, 3T3-F442A adipocytes, differentiated in the presence of dexamethasone, exhibited an adenylate cyclase activity which was stimulated 4-fold by ACTH(1-24). The stimulation of the adenylate cyclase activity by GTP gamma S remained unchanged (about 20-25-fold) suggesting that the G regulatory coupling protein was not functionally modified by dexamethasone. Binding studies with 125I-ACTH revealed that specific cellular binding could be evidenced in dexamethasone-treated cells while control adipocytes did not exhibit any specific binding of 125I-ACTH. These findings lend support to the hypothesis that the setting off of this ACTH responsiveness in 3T3-F442A cells is regulated by dexamethasone after cells are committed to adipose differentiation.  相似文献   

13.
Prostaglandin biosynthesis and prostaglandin-stimulated cyclic AMP accumulation were studied in 3T3-L1 fibroblasts as they differentiated into adipocytes. Incubation of 3T3-L1 membranes with [1-14C]prostaglandin H2, and subsequent radio-TLC analysis, showed that prostacyclin (prostaglandin I2) is the principal enzymatically synthesized prostaglandin in this cell line. Confirmation of the radiochemical data was obtained by demonstrating the presence of 6-keto-prostaglandin F1 alpha, the stable hydrolysis product of prostaglandin I2, by gas chromatography-mass spectrometry. In support of previous work, indomethacin, the prostaglandin endoperoxide synthetase (EC 1.14.99.1) inhibitor, accelerated 3T3-L1 differentiation. More importantly, the incubation of 3T3-L1 cells with insulin and the prostaglandin I2 synthetase inhibitor 9,11-azoprosta-5,13-dienoic acid (azo analog I) also enhanced the rate of cellular differentiation, even though this compound does not inhibit the synthesis of other prostaglandins. The repeated addition of exogenous prostaglandin I2 to 3T3-L1 cells inhibited insulin- and indomethacin-mediated differentiation. When 3T3-L1 cells were exposed to various prostaglandins and the cyclic AMP levels were measured, prostaglandin I2 proved to be the most potent stimulator of cyclic AMP accumulation, followed by prostaglandin E1 greater than prostaglandin H2 much greater than prostaglandin E2, while prostaglandin D2 was inactive. As 3T3-L1 cells differentiate, the ability of prostaglandin I2 or prostaglandin H2 to stimulate cyclic AMP accumulation progressively diminishes. It is suggested that 3T3-L1 differentiation may be controlled by the rate of prostaglandin I2 synthesis and/or sensitivity of the adenylate cyclase to prostaglandin I2.  相似文献   

14.
The role of cyclic ADP-ribose in the amplification of subcellular and global Ca2+ signaling upon stimulation of P2Y purinergic receptors was studied in 3T3 fibroblasts. Either (1) 3T3 fibroblasts (CD38- cells), (2) 3T3 fibroblasts preloaded by incubation with extracellular cyclic ADP-ribose (cADPR), (3) 3T3 fibroblasts microinjected with ryanodine, or (4) 3T3 fibroblasts transfected to express the ADP-ribosyl cyclase CD38 (CD38+ cells) were used. Both preincubation with cADPR and CD38 expression resulted in comparable intracellular amounts of cyclic ADP-ribose (42.3 +/- 5.2 and 50.5 +/- 8.0 pmol/mg protein). P2Y receptor stimulation of CD38- cells yielded a small increase of intracellular Ca2+ concentration and a much higher Ca2+ signal in CD38-transfected cells, in cADPR-preloaded cells, or in cells microinjected with ryanodine. Confocal Ca2+ imaging revealed that stimulation of ryanodine receptors by cADPR or ryanodine amplified localized pacemaker Ca2+ signals with properties resembling Ca2+ quarks and triggered the propagation of such localized signals from the plasma membrane toward the internal environment, thereby initiating a global Ca2+ wave.  相似文献   

15.
In crude membranes from human T lymphoblasts Molt 3 cultured under standard conditions, the adenylate cyclase system was stimulated by GTP, its beta gamma-imido analogue (p[NH]ppG,) NaF and forskolin, but not by isoprenaline, prostaglandin E1 and vasoactive intestinal peptide. TPA (tumour-promoting agent phorbol ester) added at low concentration (3.2 nM) to the culture medium induced a marked increase in functional beta 2-adrenoceptors. Competition curves of [125I]cyanopindolol with the antagonist ICI 118.551 and four beta-adrenergic agonists indicated that the emergence of functional beta 2-adrenoceptors corresponded to one class of binding sites, shifting from a high-affinity state for agonists to a low-affinity state in the presence of p[NH]ppG. This expression of beta 2-adrenoceptors after a 4 h lag period depended on newly formed mRNA and protein synthesis as judged by the inhibitory effects of actinomycin D and cycloheximide. Further effects of TPA included alterations of the stimulatory G-protein Gs and/or the catalytic unit of adenylate cyclase.  相似文献   

16.
We have previously shown that stimulation of the Ti/CD3 receptor complex on human T-cells potentiates adenylate cyclase activation by adenosine or forskolin. Anti-CD2 receptor antibodies shared with anti-CD3 antibodies the ability to potentiate dose dependently the adenosine- and forskolin-stimulated cyclic adenosine monophosphate (cAMP) accumulation, whereas stimulation of the CD45 receptor had no effect on cyclase activity. Modulation of the CD3 complex with anti-CD3 antibodies was found to decrease the CD2 receptor effect on adenylate cyclase activity greatly. The possible involvement of CD3-stimulated phospholipase C (PLC) activation on the cAMP potentiation was examined using HPB-ALL cells that express a CD3 complex with a defect coupling to PLC. Stimulation of the CD3 complex on HPB-ALL cells had only slight effects on adenosine-stimulated cAMP formation, whereas the effect on forskolin-stimulated cAMP was virtually unchanged. The CD3 effect was further analyzed in Jurkat cell membranes. In contrast to the results obtained after stimulation of intact cells, it was found that OKT3 stimulation of membranes did not potentiate the forskolin response. Finally, we tested whether inhibition of endogenous adenylate cyclase agonist production affected the CD3 effect. Inhibition of adenosine production or adenosine breakdown with 8-p-sulphophenyl theophylline (8-PST) or adenosine deaminase (ADA), respectively, did not alter the CD3 effects. Indometacin, which inhibits prostaglandin production, also had no effect. Together, these data show that stimulation of the CD2 receptor potentiates adenylate cyclase responses by a mechanism that is dependent on CD3 expression. Furthermore, the CD3 effect on cAMP appears to be mediated by two different mechanisms, one which is, and one which is not dependent on PLC. Finally, this effect is not due to an endogenous production of adenylate cyclase agonists.  相似文献   

17.
Adenylate cyclase in cultured human fibroblasts is activated by prostaglandin E1 (PGE1) or beta-adrenergic agonists, e.g., isoproterenol, and inhibited by muscarinic agonists. Incubation with PGE1 reduced adenylate cyclase responsiveness to both PGE1 and isoproterenol; this so-called heterologous desensitization is believed to result from impaired function of the stimulatory guanyl nucleotide-binding protein of the cyclase complex. The effect of heterologous desensitization by PGE1 on inhibition of adenylate cyclase by the muscarinic agonist oxotremorine was examined. Muscarinic inhibition of basal and isoproterenol-stimulated cAMP accumulation was attenuated following exposure to PGE1; the concentration of oxotremorine required for half-maximal inhibition of cAMP accumulation was increased. In both intact cells and membrane preparations the number of binding sites for [3H]scopolamine, a muscarinic antagonist, was unaltered by desensitization. Following exposure to PGE1, receptor affinity for oxotremorine, assessed by competition with [3H] scopolamine, and the guanyl nucleotide sensitivity of agonist binding were reduced. The amount of inhibitory guanyl nucleotide-binding regulatory protein available for [32P]ADP-ribosylation by pertussis toxin was unaltered by desensitization. Thus, heterologous desensitization of adenylate cyclase with the stimulatory agonist PGE1 alters sensitivity to inhibitory as well as stimulatory ligands.  相似文献   

18.
Incubation of 3T3 fibroblasts with phosphatidic acid (PA) from egg lecithin or with thrombin resulted in decreases in cellular cAMP due to inhibition of adenylate cyclase, in rapid increases in inositol 1,4,5-tris-,1,4-bis-, and 1-monophosphates probably due to activation of phospholipase C, and in arachidonic acid release. Synthetic PAs consisting of unsaturated fatty acid diesters were as effective as PA from egg lecithin, whereas PAs with saturated fatty acids were only slightly effective and antagonized the effect of active PAs selectively, despite the fact that both types of PA analogues (sodium salts) were apparently dissolved in the incubation medium. PA-induced decreases in cAMP were not affected by omission of Ca2+ from incubation medium but were abolished by prior exposure of cells to islet-activating protein (pertussis toxin). This islet-activating protein treatment of cells was without effect on PA- or thrombin-induced generation of inositol phosphates. Thus, PA-induced inhibition of adenylate cyclase was (but activation of phospholipase C was not) mediated by an islet-activating protein substrate GTP-binding protein. Homologous desensitization was observed with thrombin-, bradykinin-, and PA-induced decreases in cAMP in 3T3 cells; prior exposure of the cells to any one of these agents abolished or greatly diminished the subsequent response to the same agent but did not affect the responses to others. The effects of PA were cell-specific; it failed to decrease cAMP in rabbit platelets in which labeled PA rapidly increasing in response to thrombin or A23187 was mostly outside the cells. Based on these results, it is proposed that PA interacts with its own specific membrane receptors, thereby triggering multiple effector systems in 3T3 cells.  相似文献   

19.
The purpose of this study was to investigate the effects of nitric oxide-generating vasodilators and 8-bromo-cGMP on serum-induced mitogenesis in BALB/c 3T3 fibroblasts that lack soluble guanylate cyclase activity. Two such vasodilators, S-nitroso-N-acetylpenicillamine and isosorbide dinitrate, decreased the incorporation of (3H)thymidine in these cells dose-dependently whereas 8-bromo-cGMP was ineffective at concentrations of up to 10 mM. Moreover, S-nitroso-N-acetylpenicillamine also inhibited cell proliferation, consistent with the data on (3H)thymidine incorporation. S-nitroso-N-acetylpenicillamine had no effect on cGMP accumulation, confirming previous studies that these cells lack soluble guanylate cyclase activity. Hemoglobin and FeSO4/ascorbate, agents that inhibit the actions of nitric oxide, both decreased S-nitroso-N-acetylpenicillamine-induced antimitogenesis, supporting the view that this effect was related to the generation of nitric oxide. The antimitogenic activity of S-nitroso-N-acetylpenicillamine was unlikely to be the expression of nitric oxide-induced degradation of serum mitogens, as indicated by the decrease of the antimitogenic activity on prolonged preincubation of SNAP in serum-containing medium. We conclude that nitric oxide-generating vasodilators inhibit serum-induced mitogenesis and cell proliferation in BALB/c 3T3 fibroblasts by a cGMP-independent mechanism.  相似文献   

20.
Our previous studies showed that platelet-derived growth factor (PDGF) modulated interleukin-1 (IL-1) activity and IL-1 binding to Balb/c3T3 fibroblasts (Bonin, P. D., and Singh, J. P. (1988) J. Biol. Chem. 263, 11052-11055). Subsequent studies have demonstrated an action of PDGF at the level of IL-1 receptor (IL-1R) gene expression. PDGF treatment of Balb/c3T3 cells produces a 10-20-fold stimulation of mRNA for IL-1 receptor. Investigation of the signal transduction pathways shows that activation of either the protein kinase C pathway or the cAMP-mediated pathway leads to the stimulation of IL-1 receptor expression in Balb/c3T3 cells. Treatment of Balb/c3T3 cells with phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, produced an increased 125I-IL-1 binding to cells and stimulation of IL-1R mRNA. Staurosporine, an inhibitor of protein kinase C, blocked the induction of IL-1 binding by PDGF or PMA. Down-regulation of protein kinase C by pretreatment with PMA reduced the subsequent stimulation by PDGF. Chronic treatment with PMA, however, did not produce a complete inhibition of PDGF effect on IL-1R. Further studies showed that the agents that stimulate cAMP accumulation (isobutyl methylxanthine, dibutyryl), directly stimulate adenylate cyclase (forskolin), or activate G protein (choleragen) stimulated 125I-IL-1 binding and IL-1R mRNA accumulation in Balb/c3T3 cells. These studies suggest that potentially two signal transduction pathways mediate IL-1 receptor expression in Balb/c3T3 fibroblasts. Evidence is presented that suggests that stimulation of IL-1R through these two pathways (PMA/PDGF-stimulated and cAMP-stimulated) occurs independent of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号