首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During prion infections of the central nervous system (CNS) the cellular prion protein, PrP(C), is templated to a conformationally distinct form, PrP(Sc). Recent studies have demonstrated that the Sprn gene encodes a GPI-linked glycoprotein Shadoo (Sho), which localizes to a similar membrane environment as PrP(C) and is reduced in the brains of rodents with terminal prion disease. Here, analyses of prion-infected mice revealed that down-regulation of Sho protein was not related to Sprn mRNA abundance at any stage in prion infection. Down-regulation was robust upon propagation of a variety of prion strains in Prnp(a) and Prnp(b) mice, with the exception of the mouse-adapted BSE strain 301 V. In addition, Sho encoded by a TgSprn transgene was down-regulated to the same extent as endogenous Sho. Reduced Sho levels were not seen in a tauopathy, in chemically induced spongiform degeneration or in transgenic mice expressing the extracellular ADan amyloid peptide of familial Danish dementia. Insofar as prion-infected Prnp hemizygous mice exhibited accumulation of PrP(Sc) and down-regulation of Sho hundreds of days prior to onset of neurologic symptoms, Sho depletion can be excluded as an important trigger for clinical disease or as a simple consequence of neuronal damage. These studies instead define a disease-specific effect, and we hypothesize that membrane-associated Sho comprises a bystander substrate for processes degrading PrP(Sc). Thus, while protease-resistant PrP detected by in vitro digestion allows post mortem diagnosis, decreased levels of endogenous Sho may trace an early response to PrP(Sc) accumulation that operates in the CNS in vivo. This cellular response may offer new insights into the homeostatic mechanisms involved in detection and clearance of the misfolded proteins that drive prion disease pathogenesis.  相似文献   

2.
The cellular prion protein (PrP(C)), predominantly expressed in the central nervous system, is required for pathogenesis of prion neurodegenerative diseases and its conversion into a pathogenic isoform (PrP(Sc)) is a common feature of disease. While the physiological function of PrP(C) remains unclear, accumulating evidence indicates a role for PrP(C) in oxidative homeostasis in vivo and suggests that PrP(C) may be involved in the cellular response to oxidative stress. Mice in which PrP(C) expression has been ablated are viable and develop normally. Here we show that in an inbred line of mice, in tissues that normally express PrP at moderate to high levels, ablation of PrP(C) results in reduced mitochondrial numbers, unusual mitochondrial morphology, and elevated levels of mitochondrial manganese-dependent superoxide dismutase antioxidant enzyme. These observations may have relevance to the pathogenic mechanism for this group of fatal neurodegenerative conditions.  相似文献   

3.
Prion diseases are transmissible fatal neurodegenerative disorders affecting humans and animals. A central step in disease progression is the accumulation of a misfolded form (PrP(Sc)) of the host encoded prion protein (PrP(C)) in neuronal and non-neuronal tissues. The involvement of peripheral tissues in preclinical states increases the risk of accidental transmission. On the other hand, detection of PrP(Sc) in non-neuronal easy-accessible compartments such as muscle may offer a novel diagnostic tool. Primate models have proven invaluable to investigate prion diseases. We have studied the deposition of PrP(Sc) in muscle and central nervous system of rhesus monkeys challenged with sporadic Creutzfeldt-Jakob disease (sCJD), variant CJD (vCJD) and bovine spongiform encephalopathy (BSE) in preclinical and clinical stage using biochemical and morphological methods. Here, we show the preclinical presence of PrP(Sc) in muscle and central nervous system of rhesus monkeys experimentally infected with vCJD.  相似文献   

4.
Natural transmission of prion disease is believed to occur by peripheral infection such as oral inoculation. Following this route of inoculation, both the peripheral nervous system and the lymphoreticular system may be involved in the subsequent neuroinvasion of the central nervous system by prions, which may not necessarily result in clinical signs of terminal disease. Subclinical prion disease, characterized by the presence of infectivity and PrP(Sc) in the absence of overt clinical signs, may occur. It is not known which host factors contribute to whether infection with prions culminates in a terminal or subclinical disease state. We have investigated whether the level of host PrP(c) protein expression is a factor in the development of subclinical prion disease. When RML prion inoculum was inoculated by either the i.c. or intraperitoneal route, wild-type and tga20 mice both succumbed to terminal prion disease. In contrast, orally inoculated tga20 mice succumbed to terminal prion disease, whereas wild-type mice showed no clinical signs. However, wild-type mice sacrificed 375 or 525 days after oral inoculation harbored significant levels of brain PrP(Sc) and infectivity. These data show that same-species transmission of prions by the oral route in animals that express normal levels of PrP(c) can result in subclinical prion disease. This indicates that the level of host PrP(c) protein expression is a contributing factor to the regulation of development of terminal prion disease. Events that increase PrP(c) expression may predispose a prion-infected animal to the more deleterious effects of prion pathology.  相似文献   

5.
Currently, no treatment can prevent the cognitive and motor decline associated with widespread neurodegeneration in prion disease. However, we previously showed that targeting endogenous neuronal prion protein (PrP(C)) (the precursor of its disease-associated isoform, PrP(Sc)) in mice with early prion infection reversed spongiform change and prevented clinical symptoms and neuronal loss. We now show that cognitive and behavioral deficits and impaired neurophysiological function accompany early hippocampal spongiform pathology. Remarkably, these behavioral and synaptic impairments recover when neuronal PrP(C) is depleted, in parallel with reversal of spongiosis. Thus, early functional impairments precede neuronal loss in prion disease and can be rescued. Further, they occur before extensive PrP(Sc) deposits accumulate and recover rapidly after PrP(C) depletion, supporting the concept that they are caused by a transient neurotoxic species, distinct from aggregated PrP(Sc). These data suggest that early intervention in human prion disease may lead to recovery of cognitive and behavioral symptoms.  相似文献   

6.
Infectious prion diseases initiate infection within lymphoid organs where prion infectivity accumulates during the early stages of peripheral infection. In a mouse-adapted prion infection, an abnormal isoform (PrP(Sc)) of prion protein (PrP) accumulates in follicular dendritic cells within lymphoid organs. Human prions, however, did not cause an accumulation of PrP(Sc) in the wild type mice. Here, we report that knock-in mouse expressing humanized chimeric PrP demonstrated PrP(Sc) accumulations in follicular dendritic cells following human prion infections, including variant Creutzfeldt-Jakob disease. The accumulated PrP(Sc) consisted of recombinant PrP, but not of the inoculated human PrP. These accumulations were detectable in the spleens of all mice examined 30 days post-inoculation. Infectivity of the spleen was also evident. Conversion of humanized PrP in the spleen provides a rapid and sensitive bioassay method to uncover the infectivity of human prions. This model should facilitate the prevention of infectious prion diseases.  相似文献   

7.
Propagation of the scrapie isoform of the prion protein (PrP(Sc)) depends on the expression of endogenous cellular prion (PrP(C)). During oral infection, PrP(Sc) propagates, by conversion of the PrP(C) to PrP(Sc), from the gastrointestinal tract to the nervous system. Intestinal epithelium could serve as the primary site for PrP(C) conversion. To investigate PrP(C) sorting in epithelia cells, we have generated both a green fluorescent protein (EGFP) or hemagglutinin (HA) tagged human PrP(C) (hPrP(C)). Combined molecular, biochemical, and single living polarized cell imaging characterizations suggest that hPrP(C) is selectively targeted to the apical side of Madin-Darby canine kidney (MDCKII) and of intestinal epithelia (Caco2) cells.  相似文献   

8.
Prion infection relies on a continuous chain of PrP(c)-expressing tissues to spread from peripheral sites to the central nervous system (CNS). Direct neuroinvasion via peripheral nerves has long been considered likely. However, the speed of axonal flow is incompatible with the lengthy delay prior to the detection of PrP(Sc) in the brain. We hypothesized that Schwann cells could be the candidate implicated in this mechanism; for that, it has to express PrP(c) and to allow PrP(Sc) conversion. We investigated in vivo localization of PrP(c) in sciatic nerve samples from different strains of mice. We demonstrated that PrP(c) is mainly localized at the cell membrane of the Schwann cell. We also studied in vitro expression of PrP(c) in the Schwann cell line MSC-80 and demonstrated that it expresses PrP(c) at the same location. More specifically, we demonstrated that this glial cell line, when infected in vitro with the mouse Chandler prion strain, both produces the PrP(Sc) till after 18 passages and is able to transmit disease to mice, which then develop the typical signs of prion diseases. It is the first time that infection and replication of PrP(Sc) are shown in a peripheral glial cell line.  相似文献   

9.
Prion diseases are fatal neurodegenerative disorders resulting from conformational changes in the prion protein from its normal cellular isoform, PrPC, to the infectious scrapie isoform, PrP(Sc). In spite of many studies, the physiological function of PrPC remains unknown. Recent work shows that PrPC binds Cu2+, internalizing it into the cytoplasm. Since many antioxidant enzymes depend on Cu2+ (e.g., Cu/ZnSOD), their function could be affected in prion diseases. Here we investigate a possible relationship between PrP(C) and the cellular antioxidant systems in different structures isolated from PrPC knockout and wild-type mice by determining oxidative damage in protein and lipids and activity of antioxidant enzymes (CAT, SOD) and stress-adaptive enzymes (ODC). Our results show that, in the absence of PrPC, there is an increased oxidation of lipid and protein in all structures investigated. Decreased SOD activity and changes in CAT/ODC activities were also observed. Taking into account these results, we suggest that the physiological function of PrP(C) is related to cellular antioxidant defenses. Therefore, during development of prion diseases, the whole organism becomes more sensitive to ROS injury, leading to a progressive oxidative disruption of tissues and vital organs, especially the central nervous system.  相似文献   

10.
The spread of the abnormal conformation of the prion protein, PrP(Sc), within the spinal cord is central to the pathogenesis of transmissible prion diseases, but the mechanism of transport has not been determined. For this report, the route of transport of the HY strain of transmissible mink encephalopathy (TME), a prion disease of mink, in the central nervous system following unilateral inoculation into the sciatic nerves of Syrian hamsters was investigated. PrP(Sc) was detected at 3 weeks postinfection in the lumbar spinal cord and ascended to the brain at a rate of approximately 3.3 mm per day. At 6 weeks postinfection, PrP(Sc) was detected in the lateral vestibular nucleus and the interposed nucleus of the cerebellum ipsilateral to the site of sciatic nerve inoculation and in the red nucleus contralateral to HY TME inoculation. At 9 weeks postinfection, PrP(Sc) was detected in the contralateral hind limb motor cortex and reticular thalamic nucleus. These patterns of PrP(Sc) brain deposition at various times postinfection were consistent with that of HY TME spread from the sciatic nerve to the lumbar spinal cord followed by transsynaptic spread and retrograde transport to the brain and brain stem along descending spinal tracts (i.e., lateral vestibulospinal, rubrospinal, and corticospinal). The absence of PrP(Sc) from the spleen suggested that the lymphoreticular system does not play a role in neuroinvasion following sciatic nerve infection. The rapid disease onset following sciatic nerve infection demonstrated that HY TME can spread by retrograde transport along specific descending motor pathways of the spinal cord and, as a result, can initially target brain regions that control vestibular and motor functions. The early clinical symptoms of HY TME infection such as head tremor and ataxia were consistent with neuronal damage to these brain areas.  相似文献   

11.
12.
Branched polyamines cure prion-infected neuroblastoma cells   总被引:7,自引:0,他引:7       下载免费PDF全文
Branched polyamines, including polyamidoamine and polypropyleneimine (PPI) dendrimers, are able to purge PrP(Sc), the disease-causing isoform of the prion protein, from scrapie-infected neuroblastoma (ScN2a) cells in culture (S. Supattapone, H.-O. B. Nguyen, F. E. Cohen, S. B. Prusiner, and M. R. Scott, Proc. Natl. Acad. Sci. USA 96:14529-14534, 1999). We now demonstrate that exposure of ScN2a cells to 3 microg of PPI generation 4.0/ml for 4 weeks not only reduced PrP(Sc) to a level undetectable by Western blot but also eradicated prion infectivity as determined by a bioassay in mice. Exposure of purified RML prions to branched polyamines in vitro disaggregated the prion rods, reduced the beta-sheet content of PrP 27-30, and rendered PrP 27-30 susceptible to proteolysis. The susceptibility of PrP(Sc) to proteolytic digestion induced by branched polyamines in vitro was strain dependent. Notably, PrP(Sc) from bovine spongiform encephalopathy-infected brain was susceptible to PPI-mediated denaturation in vitro, whereas PrP(Sc) from natural sheep scrapie-infected brain was resistant. Fluorescein-labeled PPI accumulated specifically in lysosomes, suggesting that branched polyamines act within this acidic compartment to mediate PrP(Sc) clearance. Branched polyamines are the first class of compounds shown to cure prion infection in living cells and may prove useful as therapeutic, disinfecting, and strain-typing reagents for prion diseases.  相似文献   

13.
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.  相似文献   

14.
Prion infectivity and its molecular marker, the pathological prion protein PrP(Sc), accumulate in the central nervous system and often also in lymphoid tissue of animals or humans affected by transmissible spongiform encephalopathies. Recently, PrP(Sc) was found in tissues previously considered not to be invaded by prions (e.g., skeletal muscles). Here, we address the question of whether prions target the skin and show widespread PrP(Sc) deposition in this organ in hamsters perorally or parenterally challenged with scrapie. In hamsters fed with scrapie, PrP(Sc) was detected before the onset of symptoms, but the bulk of skin-associated PrP(Sc) accumulated in the clinical phase. PrP(Sc) was localized in nerve fibres within the skin but not in keratinocytes, and the deposition of PrP(Sc) in skin showed no dependence from the route of infection and lymphotropic dissemination. The data indicated a neurally mediated centrifugal spread of prions to the skin. Furthermore, in a follow-up study, we examined sheep naturally infected with scrapie and detected PrP(Sc) by Western blotting in skin samples from two out of five animals. Our findings point to the skin as a potential reservoir of prions, which should be further investigated in relation to disease transmission.  相似文献   

15.
The prion agent is the infectious particle causing spongiform encephalopathies in animals and humans and is thought to consist of an altered conformation (PrP(Sc)) of the normal and ubiquitous prion protein PrP(C). The interaction of the prion agent with the immune system, particularly the humoral immune response, has remained unresolved. Here we investigated the immunogenicity of full-length native and infectious prions, as well as the specific biological effects of the resulting monoclonal antibodies (MAbs) on the binding and clearance of prions in cell culture and in in vivo therapy. Immunization of prion knockout (Prnp(0/0)) mice with phosphotungstic acid-purified mouse prions resulted in PrP-specific monoclonal antibodies with binding specificities selective for PrP(Sc) or for both PrP(C) and PrP(Sc). PrP(Sc)-specific MAb W261, of the IgG1 isotype, reacted with prions from mice, sheep with scrapie, deer with chronic wasting disease (CWD), and humans with sporadic and variant Creutzfeldt-Jakob disease (CJD) in assays including a capture enzyme-linked immunosorbent assay (ELISA) system. This PrP(Sc)-specific antibody was unable to clear prions from mouse neuroblastoma cells (ScN2a) permanently infected with scrapie, whereas the high-affinity MAb W226, recognizing both isoforms, PrP(Sc) and PrP(C), did clear prions from ScN2a cells, as determined by a bioassay. However, an attempt to treat intraperitoneally prion infected mice with full-length W226 or with a recombinant variable-chain fragment (scFv) from W226 could only slightly delay the incubation time. We conclude that (i) native, full-length PrP(Sc) elicits a prion-specific antibody response in PrP knockout mice, (ii) a PrP(Sc)-specific antibody had no prion-clearing effect, and (iii) even a high-affinity MAb that clears prions in vitro (W226) may not necessarily protect against prion infection, contrary to previous reports using different antibodies.  相似文献   

16.
Prion diseases are associated with the accumulation of an abnormal isoform of host-encoded prion protein (PrP(Sc)). A number of prion strains can be distinguished by "glycotyping" analysis of the respective deposited PrP(Sc) compound. In this study, the long-term proteinase K resistance, the molecular mass, and the localization of PrP(Sc) deposits derived from conventional and transgenic mice inoculated with 11 different BSE and scrapie strains or isolates were examined. Differences were found in the long-term proteinase K resistance (50 microg/ml at 37 degrees C) of PrP(Sc). For example, scrapie strain Chandler or PrP(Sc) derived from field BSE isolates were destroyed after 6 hr of exposure, whereas PrP(Sc) of strains 87V and ME7 and of the Hessen1 isolate were extremely resistant to proteolytic cleavage. Nonglycosylated, proteinase K-treated PrP(Sc) of BSE isolates and of scrapie strain 87V exhibited a 1-2 kD lower molecular mass than PrP(Sc) derived from all other scrapie strains and isolates. With the exception of strain 87V, PrP(Sc) was generally deposited in the cerebrum, cerebellum, and brain stem of different mouse lines at comparable levels. Long-term proteinase resistance, molecular mass, and the analysis of PrP(Sc) deposition therefore provide useful criteria in discriminating prion strains and isolates (e.g., BSE and 87V) that are otherwise indistinguishable by the PrP(Sc) "glycotyping" technique.  相似文献   

17.
Prion diseases are characterised by the accumulation of PrP(Sc), an abnormally folded isoform of the cellular prion protein (PrP(C)), in affected tissues. Following peripheral exposure high levels of prion-specific PrP(Sc) accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrP(C) is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrP(C) expression was specifically "switched on" or "off" only on FDC. We show that PrP(C)-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrP(C)-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrP(C) expression on FDC.  相似文献   

18.
The events leading to the degradation of the endogenous PrP(C) (normal cellular prion protein) have been the subject of numerous studies. Two cleavage processes, α-cleavage and β-cleavage, are responsible for the main C- and N-terminal fragments produced from PrP(C). Both cleavage processes occur within the N-terminus of PrP(C), a region that is significant in terms of function. α-Cleavage, an enzymatic event that occurs at amino acid residues 110 and 111 on PrP(C), interferes with the conversion of PrP(C) into the prion disease-associated isoform, PrP(Sc) (abnormal disease-specific conformation of prion protein). This processing is seen as a positive event in terms of disease development. The study of β-cleavage has taken some surprising turns. β-Cleavage is brought about by ROS (reactive oxygen species). The C-terminal fragment produced, C2, may provide the seed for the abnormal conversion process, as it resembles in size the fragments isolated from prion-infected brains. There is, however, strong evidence that β-cleavage provides an essential process to reduce oxidative stress. β-Cleavage may act as a double-edged sword. By β-cleavage, PrP(C) may try to balance the ROS levels produced during prion infection, but the C2 produced may provide a PrP(Sc) seed that maintains the prion conversion process.  相似文献   

19.
Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.  相似文献   

20.
Transmissible spongiform encepahalopathies (TSEs) are fatal diseases that damage the central nervous system. TSEs are unique in that they may be inherited, infectious or spontaneous. The central pathogenic agent is thought to be a conformationally distinct form (PrP(Sc;)) of the endogenous prion protein(PrP(c)), which is high in beta-sheet content and is resistant to proteases; infectivity is thought to involve formation of PrP(Sc) via imprinting of abnormal conformation on the normal form of the protein (PrP(c)) by seeds of PrP(Sc). A number of compounds found to inhibit the conversion of PrP(c) to PrP(Sc) have been proposed as therapeutics to halt TSEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号