首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Stretch-induced differentiation of lung fetal type II epithelial cells is mediated through EGFR (ErbB1) via release of HB-EGF and TGF-α ligands. Employing an EGFR knock-out mice model, we further investigated the role of the ErbB family of receptors in mechanotranduction during lung development. Deletion of EGFR prevented endogenous and mechanical stretch-induced type II cell differentiation via the ERK pathway, which was rescued by overexpression of a constitutively active MEK. Interestingly, the expression of ErbB4, the only ErbB receptor that EGFR co-precipitates in wild-type cells, was decreased in EGFR-deficient type II cells. Similar to EGFR, ErbB4 was activated by stretch and participated in ERK phosphorylation and type II cell differentiation. However, neuregulin (NRG) or stretch-induced ErbB4 activation were blunted in EGFR-deficient cells and not rescued after ErbB4 overexpression, suggesting that induction of ErbB4 phosphorylation is EGFR-dependent. Finally, we addressed how shedding of ligands is regulated by EGFR. In knock-out cells, TGF-α, a ligand for EGFR, was not released by stretch, while HB-EGF, a ligand for EGFR and ErbB4, was shed by stretch although to a lower magnitude than in normal cells. Release of these ligands was inhibited by blocking EGFR and ERK pathway. In conclusion, our studies show that EGFR and ErbB4 regulate stretch-induced type II cell differentiation via ERK pathway. Interactions between these two receptors are important for mechanical signals in lung fetal type II cells. These studies provide novel insights into the cell signaling mechanisms regulating ErbB family receptors in lung cell differentiation.  相似文献   

4.
Insufficient fetal surfactant production leads to respiratory distress syndrome among preterm infants. Neuregulin signals the onset of fetal surfactant phospholipid synthesis through formation of erbB receptor dimers. We hypothesized that erbB4 downregulation in fetal type II epithelial cells will downregulate not only fetal surfactant phospholipid synthesis, but also affect proliferation and erbB receptor localization. We tested these hypotheses using small interfering RNA (siRNA) directed against the erbB4 gene to silence erbB4 receptor function in cultures of primary day 19 fetal rat lung type II cells. ErbB4 siRNA treatment inhibited erbB4 receptor protein expression, fibroblast-conditioned medium induced erbB4 phosphorylation, and fetal surfactant phospholipid synthesis. Cell proliferation, measured as thymidine incorporation, was also inhibited by erbB4 siRNA treatment. Downregulation of erbB4 receptor protein changed erbB1 localization at baseline and after stimulation, as determined by confocal microscopy and subcellular fractionation. We conclude that erbB4 is an important receptor in the control of fetal lung type II cell maturation.  相似文献   

5.
Objective: ErbB receptors and their ligands play crucial roles in development. During late gestation, they might also be involved in the pathogenesis of prematurity-associated disorders. ErbB receptor dimerization leads to a diversity of biologic signals. We studied the expression and localization patterns of erbB receptors in the developing human umbilical endothelial cell system. It is still unclear, whether expression patterns might be developmentally regulated and depend on the cell type studied. Methods: Primary human umbilical venous endothelial cells (HUVEC) and arterial endothelial cells (HUAEC) were isolated between 24 and 42 weeks of gestation and used for immunoprecipitation, Western blotting, and confocal microscopy. Results: All four erbB receptors were present in HUVEC and HUAEC. Expression patterns were similar for cell types at gestational ages examined. ErbB4 always co-precipitated with erbB1 in both cell types independent of the gestational age. Confocal microscopy revealed that all erbB receptors were localized in the nucleus, erbB1 and erbB3 in the nucleoli, while erbB2 and erbB4 spared the nucleolar region. All receptors showed a tendency to co-localize. Growth factor stimulation altered localization patterns. Cellular subfractionation experiments for erbB4 largely confirmed microscopy results. Pretreatment with lipopolysaccharide enhanced this nuclear localization of erbB4, particularly of its intracellular domain. Conclusions: All erbB receptors are present in both HUVEC and HUAEC at all gestational ages tested. ErbB receptor expression patterns were independent of the developmental stage of the endothelial cell, at least in the third trimester. We speculate that endothelial erbB receptors might play a role in normal development in mid and late gestation. We also speculate that these findings, together with the known involvement of erbB receptors in development, inflammation, and angiogenesis, will open new avenues for erbB receptor-related research in the pathogenesis of fetal and neonatal inflammation-associated disorders.  相似文献   

6.
The role in cell multiplication and maturation of several factors present in the late fetal lung was explored on isolated fetal rat pulmonary fibroblasts and alveolar epithelial type II cells cultivated in serum-free medium. The low degree of reciprocal contamination of each cell population was assessed by immunocytochemistry. Epidermal Growth Factor (EGF) stimulated thymidine incorporation and DNA accumulation in both cell types. In type II cells, it increased labeled-choline incorporation into surfactant phosphatidylcholine (PC), consistently with previous data obtained with lung explant cultures, but not into non-surfactant PC. Insulin-like growth factor (IGF)-I slightly stimulated DNA accumulation in fibroblasts although it did not significantly stimulate thymidine incorporation, contrary to IGF-II which presented a dose-dependent stimulating activity of thymidine incorporation. Neither IGF-I nor IGF-II stimulated type II cell growth. IGFs thus appear to primarily control the growth of lung mesenchyme. In type II cells, they stimulated the most non-surfactant PC biosynthesis. Gastrin releasing peptide (GRP) which was recently reported to promote fetal lung growth in vivo and to stimulate surfactant biosynthesis in lung organ culture revealed as a growth factor for type II cells only, at concentrations below 10 −9 M. At concentration 10 −8 M, although it did not affect DNA synthesis, GRP tended to increase surfactant and non-surfactant-PC biosynthesis. Retinoic acid inhibited thymidine incorporation into type II cells on a dose-dependent manner but nevertheless enhanced surfactant-PC biosynthesis to a similar extent as EGF. It is suggested that retinoic acid may represent a differentiation or maturation factor for the alveolar epithelium.  相似文献   

7.
The role in cell multiplication and maturation of several factors present in the late fetal lung was explored on isolated fetal rat pulmonary fibroblasts and alveolar epithelial type II cells cultivated in serum-free medium. The low degree of reciprocal contamination of each cell population was assessed by immunocytochemistry. Epidermal Growth Factor (EGF) stimulated thymidine incorporation and DNA accumulation in both cell types. In type II cells, it increased labeled-choline incorporation into surfactant phosphatidylcholine (PC), consistently with previous data obtained with lung explant cultures, but not into non-surfactant PC. Insulin-like growth factor (IGF)-I slightly stimulated DNA accumulation in fibroblasts although it did not significantly stimulate thymidine incorporation, contrary to IGF-II which presented a dose-dependent stimulating activity of thymidine incorporation. Neither IGF-I nor IGF-II stimulated type II cell growth. IGFs thus appear to primarily control the growth of lung mesenchyme. In type II cells, they stimulated the most non-surfactant PC biosynthesis. Gastrin releasing peptide (GRP) which was recently reported to promote fetal lung growth in vivo and to stimulate surfactant biosynthesis in lung organ culture revealed as a growth factor for type II cells only, at concentrations below 10(-9) M. At concentration 10(-8) M, although it did not affect DNA synthesis, GRP tended to increase surfactant and non-surfactant-PC biosynthesis. Retinoic acid inhibited thymidine incorporation into type II cells on a dose-dependent manner but nevertheless enhanced surfactant-PC biosynthesis to a similar extent as EGF. It is suggested that retinoic acid may represent a differentiation or maturation factor for the alveolar epithelium.  相似文献   

8.
《Cytokine》2007,37(5-6):267-275
Objective: ErbB receptors and their ligands play crucial roles in development. During late gestation, they might also be involved in the pathogenesis of prematurity-associated disorders. ErbB receptor dimerization leads to a diversity of biologic signals. We studied the expression and localization patterns of erbB receptors in the developing human umbilical endothelial cell system. It is still unclear, whether expression patterns might be developmentally regulated and depend on the cell type studied. Methods: Primary human umbilical venous endothelial cells (HUVEC) and arterial endothelial cells (HUAEC) were isolated between 24 and 42 weeks of gestation and used for immunoprecipitation, Western blotting, and confocal microscopy. Results: All four erbB receptors were present in HUVEC and HUAEC. Expression patterns were similar for cell types at gestational ages examined. ErbB4 always co-precipitated with erbB1 in both cell types independent of the gestational age. Confocal microscopy revealed that all erbB receptors were localized in the nucleus, erbB1 and erbB3 in the nucleoli, while erbB2 and erbB4 spared the nucleolar region. All receptors showed a tendency to co-localize. Growth factor stimulation altered localization patterns. Cellular subfractionation experiments for erbB4 largely confirmed microscopy results. Pretreatment with lipopolysaccharide enhanced this nuclear localization of erbB4, particularly of its intracellular domain. Conclusions: All erbB receptors are present in both HUVEC and HUAEC at all gestational ages tested. ErbB receptor expression patterns were independent of the developmental stage of the endothelial cell, at least in the third trimester. We speculate that endothelial erbB receptors might play a role in normal development in mid and late gestation. We also speculate that these findings, together with the known involvement of erbB receptors in development, inflammation, and angiogenesis, will open new avenues for erbB receptor-related research in the pathogenesis of fetal and neonatal inflammation-associated disorders.  相似文献   

9.
Maturation of pulmonary fetal type II cells to initiate adequate surfactant production is crucial for postnatal respiratory function. Little is known about specific mechanisms of signal transduction controlling type II cell maturation. The ErbB4 receptor and its ligand neuregulin (NRG) are critical for lung development. ErbB4 is cleaved at the cell membrane by the γ-secretase enzyme complex whose active component is either presenilin-1 (PSEN-1) or presenilin-2. ErbB4 cleavage releases the 80 kDa intracellular domain (4ICD), which associates with chaperone proteins such as YAP (Yes-associated protein) and translocates to the nucleus to regulate gene expression. We hypothesized that PSEN-1 and YAP have a development-specific expression in fetal type II cells and are important for ErbB4 signaling in surfactant production. In primary fetal mouse E16, E17, and E18 type II cells, PSEN-1 and YAP expression increased at E17 and E18 over E16. Subcellular fractionation showed a strong cytosolic and a weaker membrane location of both PSEN-1 and YAP. This was enhanced by NRG stimulation. Co-immunoprecipitations showed ErbB4 associated separately with PSEN-1 and with YAP. Their association, phosphorylation, and co-localization were induced by NRG. Confocal immunofluorescence and nuclear fractionation confirmed these associations in a time-dependent manner after NRG stimulation. Primary ErbB4-deleted E17 type II cells were transfected with a mutant ErbB4 lacking the γ-secretase binding site. When compared to transfection with wild-type ErbB4, the stimulatory effect of NRG on surfactant protein mRNA expression was lost. We conclude that PSEN-1 and YAP have crucial roles in ErbB4 signal transduction during type II cell maturation.  相似文献   

10.
Epidermal growth factor (EGF) receptor (EGFR) regulates development of cell-cell communication in fetal lung, but the signal transduction mechanisms involved are unknown. We hypothesized that, in late-gestation fetal rat lung, phospholipase C-gamma (PLC-gamma) expression and activation by EGF is cell specific and developmentally regulated. PLC-gamma immunolocalized to cuboidal epithelium and mesenchymal clusters underlying developing saccules. PLC-gamma protein increased from day 17 to day 19 and then decreased. In cultured fetal lung fibroblasts, EGF stimulated PLC-gamma phosphorylation 2.6-fold (day 17), 10.8-fold (day 19), and 4.2-fold (day 21). EGF stimulated (3)H-labeled diacylglycerol production in fibroblasts (beginning on day 18 in female and on day 19 in male rats), but not in type II cells at any time during gestation. EGFR blockade abrogated the observed stimulation of PLC-gamma phosphorylation by EGF. In conclusion, PLC-gamma expression and activation by EGF in fetal lung are cell specific, corresponding to the development of EGFR expression. EGF induces diacylglycerol production in a cell- and gestation-specific manner. PLC-gamma activation by EGFR in fetal lung fibroblasts may be involved in EGF control of lung development.  相似文献   

11.
Primary cultures of perinatal rat fibroblasts were found to produce at least three mitogenic activities which exhibited specificity for distinct cell types. One activity, lung growth factor(LGF), was a potent mitogen for chick embryonal fibroblasts, which also stimulated fetal rat lung fibroblasts to undergo DNA synthesis, provided that these cells were first exposed to a "competence" factor such as fibroblast growth factor or platelet-derived growth factor. Although LGF was active in the somatomedin-C (SmC) radioimmunoassay and resembled buffalo rat liver multiplication-stimulating activity (brlMSA) in molecular size, it appears to consist of a component that is neither SmC nor brlMSA. The second activity produced by perinatal rat lung cultures, pneumocyte-stimulating activity (PSA), stimulated mitosis in type II pneumocytes of postnatal rats, and was found to have physical attributes that are distinct from those of the other known pneumocyte-influencing factors. The third activity is a non-dialyzable substance which complements the mitogenic action of LGF on fetal lung fibroblasts, and appears to be a "competence" activity. An examination of the production of LGF and PSA by rat lung fibroblasts taken at various intervals of development revealed that fetal lung fibroblasts produce maximal levels of LGF but low levels of PSA, whereas, in neonatal lung fibroblasts, the situation is reversed. This ontogenic shift in the type of parahormone produced by the developing perinatal rat lung may be an important regulatory event in postnatal lung morphogenesis in this species.  相似文献   

12.
Phosphatidylcholine labeling was studied in freshly isolated adult rat alveolar type II epithelial cells exposed to dexamethasone and epidermal growth factor. Dexamethasone at a medium concentration of 10?8m, enhanced phosphatidylcholine labeling in type II cells by about 25%. In lung fibroblast controls, dexamethasone had no effect. Phosphatidylcholine secretion into the culture medium was not observed in either cell type. Quantitation of dexamethasone receptors revealed a twofold greater number of receptors in type II cells than in control fibroblasts. In contrast, the addition of epidermal growth factor to the medium of type II cells or lung fibroblasts had no effect on phosphatidylcholine labeling or secretion into culture medium. Lung fibroblasts were found to have 11-fold more surface receptors for epidermal growth factor than isolated type II cells. These results indicate that dexamethasone significantly increases phosphatidylcholine synthesis in type II cells and thus, may also effect the production of surfactant by these cells.  相似文献   

13.
Coordination of growth and differentiation in the fetal lung   总被引:2,自引:0,他引:2  
The male fetal lung begins to synthesize surfactant later in gestation than the female. This delay appears to be caused by androgens. We hypothesized that male fetal lung differentiation is delayed as a consequence of an extended phase of growth which is elicited by androgens. We observed that in vivo fetal lung protein synthesis relative to DNA synthesis peaked earlier in gestation in the female fetal lung and that this event was synchronous with the onset of differentiation. Pregnant rats were treated with dihydrotestosterone (DHT) during pregnancy, and fetal lung growth parameters were measured. Lung wet weight, dry weight, and DNA and protein concentrations were significantly elevated by DHT treatment. Type II cells and fibroblasts were isolated from lungs of DHT-treated fetuses. The number of total cells recovered was increased by 30%; the number of type II cells recovered was increased by 87%; and the number of fibroblasts recovered was increased by 42%. The type II cells which were recovered exhibited increased incorporation of [3H]thymidine into DNA and a reduced ratio of radiolabeled protein to radiolabeled DNA compared to that of cells from control lungs. Further studies were done in vitro with fibroblasts and type II cells isolated from untreated fetal rat lungs. Treatment of the fibroblasts with DHT during culture caused an increase in thymidine incorporation into DNA. This effect was not blocked by simultaneous treatment with cortisol, which normally causes reduced DNA synthesis and induces fibroblast differentiation. Treatment of the type II cells with DHT in culture caused a dose-dependent increase in cell number but a decrease in synthesis of disaturated phosphatidylcholine. These studies provide more direct evidence of the interrelationships between the control of growth and the control of differentiation in the fetal lung. DHT, a signal which delays the onset of expression of differentiation, also induces growth. We conclude that the controls of growth and of differentiation of the fetal lung are reciprocally linked.  相似文献   

14.
The role of glucocorticoids in the regulation of vitamin K-dependent carboxylase activity was investigated in fetal and adult lung. Glucocorticoid deficiency induced by adrenalectomy (ADX) stimulated adult lung growth and reduced carboxylation in a tissue-specific manner. Type II epithelial cells were enriched in carboxylase activity, where ADX-induced downregulation was retained in freshly isolated cells. Carboxylase activity in fetal type II cells was one-half that found in fetal fibroblasts isolated from the same lungs, and both populations increased activity with time in culture. Both carboxylase activity and formation of gamma-carboxyglutamate (Gla)-containing proteins were stimulated by dexamethasone (Dex) in fetal type II cells. Matrix Gla protein (MGP), a vitamin K-dependent protein known to be synthesized in type II cells, was also found in fetal fibroblasts, where its expression was stimulated by Dex. These combined results suggested an important role for glucocorticoids and MGP in the developing lung, where both epithelial and mesenchymal cells coordinate precise control of branching morphogenesis. We investigated MGP expression and its regulation by Dex in the fetal lung explant model. MGP mRNA and protein were increased in parallel with the formation of highly branched lungs, and this increase was stimulated twofold by Dex at each day of culture. Dex-treated explants were characterized by large, dilated, conducting airways and a peripheral rim of highly branched saccules compared with uniformly branched controls. We propose that glucocorticoids are important regulators of vitamin K function in the developing and adult lung.  相似文献   

15.
16.
17.
Glucocorticoids accelerate fetal lung maturation by acting on the fetal lung fibroblast to induce the synthesis of fibroblast-pneumonocyte factor which in turn stimulates pulmonary surfactant synthesis by the alveolar type II cell. We have studied the site of glucocorticoid regulation of fibroblast-pneumonocyte factor synthesis in primary cultures of fetal rat lung fibroblasts. Conditioned media from fetal rat lung fibroblasts exposed to cortisol stimulate [Me-3H]choline incorporation into saturated phosphatidylcholine by primary cultures of fetal rat lung alveolar type II cells. This effect is blocked by the presence of actinomycin D during the first, but not the second, 24 h of incubation of the fibroblasts with cortisol. Cycloheximide blocks this effect if present during either the first or second 24 h of incubation. We fractionated mRNA from fetal rat lung fibroblasts incubated in the presence or absence of dexamethasone and observed that cell-free translation products from a fraction of approximately 500 bases possess biological activity in the bioassay. Such activity is only present in cell-free translation products of mRNA isolated from fibroblasts treated with dexamethasone. These results suggest that glucocorticoids act at a pretranslational level to induce production of fibroblast-pneumonocyte factor and that the primary translation products are biologically active.  相似文献   

18.
The cellular mechanism by which glucocorticoids stimulate phosphatidylcholine biosynthesis has been studied in the fetal rat lung in vivo and in cultured fetal rat lung cells of varying levels of complexity. Administration of dexamethasone to pregnant rats at 18 days gestation resulted in a significant increase in saturated phosphatidylcholine content in fetal lung 24 h after injection. Dexamethasone administration increased the activity of fetal lung choline-phosphate cytidylyltransferase by 34%. It had no effect on the activities of fetal lung choline kinase and choline phosphotransferase. Exposure of fetal lung type II cells in organotypic cultures (which contain both type II cells and fibroblasts) to cortisol resulted in a 1.6-fold increase in the incorporation of [Me-3H]choline into saturated phosphatidylcholine. The activities of the enzymes in the choline pathway for the de novo biosynthesis of phosphatidylcholine were not significantly altered except for a 105% increase in choline-phosphate cytidylyltransferase activity. Treatment of monolayer cultures of fetal type II cells with cortisol-conditioned medium from fetal lung fibroblasts resulted in a 1.5-fold increase in saturated phosphatidylcholine production. This effect correlated with a doubling of choline-phosphate cytidylyltransferase activity. Additional evidence that this stimulatory action is mediated by fibroblast-pneumonocyte factor, produced by fetal lung fibroblasts in response to cortisol, was obtained. The factor was partially purified from cortisol-conditioned medium of fetal lung fibroblasts by gel filtration and affinity chromatography. Based on biological activity, a 3000-fold purification was obtained. Stimulation of saturated phosphatidylcholine synthesis in type II cells by fibroblast-pneumonocyte factor was maximal within 60 min of incubation. Pulse-chase experiments indicated that the stimulatory effect was correlated with an increased conversion of choline phosphate into CDP choline. Moreover, the enhanced phosphatidylcholine formation by fetal type II cells in response to fibroblast-pneumonocyte factor was accompanied by decreased levels of cellular choline phosphate. These findings further support the concept that glucocorticoid action on surfactant-associated phosphatidylcholine synthesis occurs ultimately at the level of the alveolar type II cell and involves fibroblast-pneumonocyte factor which stimulates the activity of choline-phosphate cytidylyltransferase.  相似文献   

19.
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in de novo synthesis of phosphatidylcholine (PC). The lung requires a steady synthesis of PC for lung surfactant of which disaturated PC is the essential active agent. Surfactant synthesis occurs in alveolar type II cells. Studies with non-pulmonary cells have suggested that CCT is both a nuclear and cytoplasmic protein. The unusual requirements of the lung for PC synthesis and, therefore, CCT activity suggest a unique mechanism of regulation and possibly localization of CCT. The localization of CCT alpha in lung epithelial cells and, of greater consequence, lung tissues are yet unknown. Three isoforms of CCT have been identified. Herein we investigated the localization of the ubiquitously expressed CCT alpha isoform. To ascertain CCT alpha localization in lungs and lung-related epithelial cells, we employed a number of localization methods. Immunogold electron microscopy using polyclonal antibodies raised to either the carboxyl terminus, catalytic domain, or amino terminus of CCT alpha localized CCT alpha mostly to the exterior plasma membrane or regions of the endoplasmic reticulum (ER) in both A549 and MLE-15 epithelial lung cell lines and primary cultures of fetal rat lung epithelial cells. In contrast to other studies, little or no nuclear labeling was observed. Indirect immunofluorescence of these cells with anti-CCT alpha antibodies resulted in a similar distribution. Indirect visualization of both hemagglutinin- and FLAG-tagged CCT alpha as well as direct visualization of enhanced green fluorescence protein-CCT alpha fusion protein corroborated a cytoplasmic localization of CCT alpha in pulmonary cells. Moreover, analysis of lung tissue from fetal and adult mouse by either immunogold electron microscopy or indirect immunofluorescence yielded a strong cytoplasmic CCT alpha signal with virtually no nuclear localization in epithelial cells lining the airways. The cytoplasmic localization of CCT alpha in type II cells was further substantiated with transgenic mice overexpressing FLAG-tagged CCT alpha using the lung-specific human surfactant protein C (SP-C) promoter. We conclude that CCT alpha does not localize to the nucleus in pulmonary tissues, and, therefore, nuclear localization of CCT alpha is not a universal event.  相似文献   

20.
ErbB2 is a receptor tyrosine kinase belonging to the family of epidermal growth factor (EGF) receptors which is generally involved in cell differentiation, proliferation, and tumor growth, and activated by heterodimerization with the other members of the family. We show here that type IV pilus-mediated adhesion of Neisseria meningitidis onto endothelial cells induces tyrosyl phosphorylation and massive recruitment of ErbB2 underneath the bacterial colonies. However, neither the phosphorylation status nor the cellular localization of the EGF receptors, ErbB3 or ErbB4, were affected in infected cells. ErbB2 phosphorylation induced by N. meningitidis provides docking sites for the kinase src and leads to its subsequent activation. Specific inhibition of either ErbB2 and/or src activity reduces bacterial internalization into endothelial cells without affecting bacteria-induced actin cytoskeleton reorganization or ErbB2 recruitment. Moreover, inhibition of both actin polymerization and the ErbB2/src pathway totally prevents bacterial entry. Altogether, our results provide new insight into ErbB2 function by bringing evidence of a bacteria-induced ErbB2 clustering leading to src kinase phosphorylation and activation. This pathway, in cooperation with the bacteria-induced reorganization of the actin cytoskeleton, is required for the efficient internalization of N. meningitidis into endothelial cells, an essential process enabling this pathogen to cross host cell barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号