首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
ABSTRACT

Endosperm weakening is a key event for completion of seed germination in plants such as tomato and tobacco. Weakening is related to the action of endo-β-mannanases able to hydrolyse the mannose polymers typically stored in the wall of the endosperm cells. In this study, we determined the presence and the localisation of endo-β-mannanases in Phacelia tanacetifolia seeds during the early phases of germination. In endosperm cells of dry seeds, and of seeds incubated in the light for 16 h, a similar distribution of endo-β-mannanases, mainly localised in protein bodies, was revealed by immunolocalization. In contrast, under conditions of permissive germination (seeds incubated for 16 h in the dark), these enzymes appeared localised near the cell walls, and were no longer detectable in protein bodies. Western blot analyses showed the presence of three isoforms of endo-β-mannanases in the endosperm and one isoform in the embryo. All these isoforms had similar molecular weights (approx 38 kDa). A possible role of endo-β-mannanases during early phases of germination is suggested.  相似文献   

2.
A galactomannan-hydrolyzing enzyme that develops pregerminatively in the micropylar region of the endosperm of the tomato (Lycopersicon esculentum [L.] Mill.) seed was characterized. The enzyme was endo-[beta]-mannanase (EC 3.2.1.78), since it hydrolyzed galactomannan into oligosaccharides with no release of galactose and mannose. The mobility of this pregerminative enzyme in sodium dodecyl sulfate and native polyacrylamide gel electrophoresis was not identical to that of any of the three endo-[beta]-mannanases that develop in the same tissue (endosperm) after germination (H. Nonogaki, M. Nomaguchi, Y. Morohashi [1995] Physiol Plant 94: 328-334). There were also some differences in the products of galactomannan hydrolysis between the pregerminative and the postgerminative enzymes, indicating that the action pattern is different between the two types of enzymes. The pregerminative enzyme began to develop in the micropylar region of the endosperm at about 18 h postimbibition and increased up to the time immediately before radicle protrusion (24 h postimbibition). This enzyme was not present in the lateral part of the endosperm at any stage before or after germination. It is proposed that the enzyme develops prior to germination specifically at the micropylar region of the endosperm.  相似文献   

3.
4.
beta-1,3-Glucanase (EC 3.2.1.39) and chitinase (EC 3.2.1.14) mRNAs, proteins, and enzyme activities were expressed specifically in the micropylar tissues of imbibed tomato (Lycopersicon esculentum Mill.) seeds prior to radicle emergence. RNA hybridization and immunoblotting demonstrated that both enzymes were class I basic isoforms. beta-1,3-Glucanase was expressed exclusively in the endosperm cap tissue, whereas chitinase localized to both endosperm cap and radicle tip tissues. beta-1,3-Glucanase and chitinase appeared in the micropylar tissues of gibberellin-deficient gib-1 tomato seeds only when supplied with gibberellin. Accumulation of beta-1,3-glucanase mRNA, protein and enzyme activity was reduced by 100 microM abscisic acid, which delayed or prevented radicle emergence but not endosperm cap weakening. In contrast, expression of chitinase mRNA, protein, and enzyme activity was not affected by abscisic acid. Neither of these enzymes significantly hydrolyzed isolated tomato endosperm cap cell walls. Although both beta-1,3-glucanase and chitinase were expressed in tomato endosperm cap tissue prior to radicle emergence, we found no evidence that they were directly involved in cell wall modification or tissue weakening. Possible functions of these hydrolases during tomato seed germination are discussed.  相似文献   

5.
Abstract A 5.8 kbp DNA fragment from Clostridium cellulovorans (ATCC 35296) containing endo-β-1,4-glucanase (1,4-β- d -glucan glucanohydrolase, carboxymethylcellulase, CMCase; EC 3.2.1.4) gene, engD was cloned in Escherichia coli . The clone harboring a subcloned 3.8 kb fragment in plasmid, pEQ52V, produced an enzyme that showed both endo-β-1,4-glucanase activity as well as cellobiosidase activity. Zymograms with the engD encoded enzyme with carboxymethyl-cellulose as the substrate indicated that the molecular mass of the active protein was 50 000.  相似文献   

6.
Development of galactomannan-hydrolyzing activity, that is involved in the weakening of the mechanical restraint of the endosperm, was followed at pre-germinative stages in tomato ( Lycopersicon esculentum ) seed. Prior to germination the activity developed exclusively in the endosperm portion just adjacent to the radicle tip. In other parts of the endosperm, the activity developed only after germination occurred. Under the conditions where germination was suppressed (far-red light- or ABA-treatment). no activity was detected in the endosperm at the pre-germinative stages. Under the conditions where the inhibition of germination was alleviated (far-red + red or ABA + GA3), the activity developed prior to germination in the endosperm part in front of the radicle tip. Thus, a clear parallel relationship was observed between germinability of the seed and the pre-germinative development of activity in the part of the endosperm portion adjacent to the radicle tip.  相似文献   

7.
8.
Changes in activities of acid invertase and sucrose synthaseduring growth of mung bean seedlings were examined and the correlationbetween the activity of acid invertase and growth was confirmed.Acid invertase was purified from hypocotyls of etiolated seedlingsand separated into two fractions (A and B) by chromatographyon hydroxylapatite. Acid invertase in fraction B consisted oftwo polypeptides of 30 kDa and 38 kDa, but that in fractionA was 70 kDa in size. Antibodies raised against the 30-kDa polypeptideimmunoprecipitated enzymatic activity but those raised againstthe 38-kDa polypeptide did not. The concanavalin A-binding siteof acid invertase was contained in the 38-kDa polypeptide andnot in the 30-kDa polypeptide. However, when acid invertasewas bound to and eluted from concanavalin A-Sepharose, the 30-kDapolypeptide was found together with the 38-kDa polypeptide inthe eluate. Acid invertase in hypocotyls of mung bean seedlingsappears to be present in two forms: a monomer of 70 kDa anda hetero-dimer of 30-kDa and 38-kDa polypeptides. The monomerwas not converted to the heterodimer during incubation of acrude extract and was present together with the heterodimerin very young hypocotyls. In older hypocotyls, the heterodimerwas present but the monomer was barely detectable. We concludethat the two forms of acid invertase are present within cells,but the relationship between the two forms is unknown at present. (Received July 18, 1991; Accepted October 9, 1991)  相似文献   

9.
The monomer molecular mass of glucose dehydrogenase (GDH, EC 1.1.1.47) from rainbow trout liver and beef liver were estimated to be 90 kDa for both enzymes, by electrophoresis in the presence of Na-dodecyl-SO4 (SDS). The 90-kDa proteins were partially degraded to about 60 kDa when purified with a delayed procedure without protease inhibitors. Tryptic cleavage of the 90-kDa proteins gave fragments of about 60 kDa and 30 kDa, being similar for trout and beef GDH. Isoelectric points, kinetic and thermodynamic properties of the two enzymes are markedly different. Triton X-100 stimulated and stabilized the reactions catalysed by the purified enzymes.  相似文献   

10.
Invertase ( β -fructofuranoside fructohydrolase, EC 3.2.1.26) activity in developing maize ( Zea mays L. inbred W64A) was separated into soluble and particulate forms. The particulate form was solubilized by treatment with 1 M NaCl or with other salts. However, CaCl2 inhibited invertase activity, and neither detergents nor 0.5 M methyl mannoside were effective in solubilizing the invertase activity. The soluble and particulate invertases were both glycoproteins, both had pH optima of 5.0 and Km values for sucrose of 2.83 and 1.84 m M , respectively. The apparent molecular weight of salt-solubilized invertase was 40 kDa. Gel filtration of the soluble invertase showed multiple peaks with apparent molecular weights ranging from 750 kDa to over 9 000 kDa. Histochemical staining of cell wall preparations for invertase activity suggested that the particulate invertase is associated with the cell wall. Also, nearly all the invertase activity was localized in the basal endosperm and pedicel tissues, which are sites of sugar transport. No invertase activity was found in the upper endosperm, the embryo or in the placento-chalazal tissue. In contrast, sucrose synthase (EC 2.4.1.13) activity was found primarily in the embryo and the upper endosperm, which are areas of active biosynthesis of storage compounds.  相似文献   

11.
The plant pathogenic basidiomycete Sclerotium rolfsii produces a wide range of extracellular hemicellulolytic enzymes. To study the effect of β-mannanases in total chlorine free bleaching of softwood pulp, two purified β -mannanases from S. rolfsii, with molecular masses of 42 and 61 kDa, a xylanase preparation from S. rolfsii and combinations of these were tested in a O(QX)P bleaching sequence (O = oxygen delignification, X = treatment with enzymes, Q = chelation of metals, P = treatment with hydrogen peroxide in alkaline solution). A brightness increase of 1.6 and 1.9% ISO was obtained with the 42 and 61 kDa mannanase and a combination of each of these enzymes with xylanases gave a brightness increase of 2.5 and 2.8% ISO, respectively. The effect of mannanases and xylanases was nearly additive. Both mannanases alone caused a lower decrease of the kappa number as compared to xylanases. The mannanases differed in their ability to release oligosaccharides from different mannans. The 61 kDa mannanase liberated larger fragments and caused rapid depolymerisation of mannans, which seems to promote the bleaching of pulp.  相似文献   

12.
A metal-tolerant fern, Athyrium yokoscense, is capable of growingin highly copper-contaminated soil, but cupric chloride inhibitedthe activities of some enzymes extracted from the fern. Thefunction in the detoxification of copper of two copper-bindingsubstances was investigated by examination of their effectson various enzymes assayed in vitro, i.e. acid phosphatase (orthophosphoric-monoesterphosphohydrolase [acid optimum], EC 3.1.3.2 [EC] ), glucose-6-phosphatedehydrogenase (D-glucose-6-phosphate: NADP+ 1-oxidoreductase,EC 1.1.1.49 [EC] ) and isocitrate dehydrogenase (threo-Ds-isocitrate:NADP+ oxidoreductase [decarboxylating], EC 1.1.1.42 [EC] ). The twocopper-binding substances, whose apparent molecular weightsare 9.5 kDa and 2 kDa, were previously obtained from the solublecytoplasmic fraction of the fern root. The 9.5-kDa substance,which is a cysteine-rich peptide induced as a result of exposureof the fern to copper, was found to suppress almost entirelythe inhibitory effects of the metal on the enzymes. The suppressoractivity of the peptide was nearly as effective as that of ethylenediaminetetraaceticacid. The 2-kDa substance, which is also found in fern thathas not been exposed to copper, had a more modest suppressoractivity. These results indicate that the 9.5-kDa substancemay contribute to the copper-tolerance of the fern growing incopper-contaminated soil. (Received August 26, 1988; Accepted March 17, 1989)  相似文献   

13.
The most abundant isoforms of tomato pectin methylesterase (PME; EC 3.1.1.11; M(r) 26 kDa), polygalacturonase (PG; EC 3.2.1.15; PG1 with M(r) 82 kDa) and a basic protein with M(r) 42 kDa and unknown function were isolated from fresh tomato fruit by a fast chromatographic procedure on a Convective Interaction Media (CIM) short monolithic disk column bearing carboxymethyl (CM) groups. The extraction of the targeted enzymes with 1.2M NaCl solution was followed by precipitation with ammonium sulfate at 60% of saturation, solubilisation of the pellet in 0.5M NaCl and fractionation using a linear gradient from 0 to 700 mM NaCl. Among six fractions five had PME activity and four had PG activity, while one fraction containing a pure protein with M(r) 42 kDa with neither of these activities. Two concentrated fractions, one with PG and one with PME were further purified. A linear gradient from 0 to 500 mM NaCl with 20% CH(3)CN in the mobile phase was used for the PG fraction and two CM disks and a linear gradient from 0 to 200 mM NaCl were used for the PME fraction as a greater capacity was necessary in this case. From 4 kg of fresh tomato flesh we obtained 22 mg of purified PME, 1.8 mg of purified, active PG1, 13.5mg of additional basic protein and a fraction with PG2 contaminated by a PME isoform. Carboxymethyl CIM disk short monolithic columns are convenient for semi-preparative and analytical work with tomato fruit pectolytic enzymes.  相似文献   

14.
The occurrence of endo--mannanase in the embryo of germinating and germinated tomato (Lycopersicon esculentum Mill.) seeds was characterized. The endo--mannanase that developed in the embryo consisted of two isoforms and their molecular masses (41 and 42 kDa) did not correspond to the mass (37-39 kDa) of any isoform present in the endosperm. This indicates that mannanase isoforms present in the embryo are embryo-specific. Specific activities (with locust bean galactomannan as substrate) were also different between the embryonic and the endospermic enzymes. The enzyme was absent from the embryo of seeds imbibed for 2 h. With time after imbibition, mannanase content increased until the radicle had just protruded (day 2). However, the increase was transient and the content rapidly decreased thereafter and fell to an undetectable level on day 4. Tissue prints showed that the activity first appeared at the tip part of the radicle and then at the tip of the cotyledon. Thereafter the activity spread through the embryo tissues from the both tip parts.  相似文献   

15.
Laminarin-hydrolysing activity developed in the endosperm of tomato (Lycopersicon esculentum) seeds following germination. The enzyme was basic (pI>10) and the apparent molecular mass was estimated to be 35 kDa by SDS-PAGE. It was specific for linear beta-1,3-glucan substrates. Laminarin was hydrolysed by the enzyme to yield a mixture of oligoglucosides, indicating that the enzyme had an endo-action pattern. Thus, the enzyme was identified as beta-1,3- endoglucanase (EC 3.2.1.39). The activity of the enzyme developed in the endosperm after radicle protrusion (germination) had occurred and the enzyme activity was localized exclusively in the micropylar region of the endosperm where the radicle had penetrated. When the lateral endosperm region, where no induction of the enzyme occurred, was wounded (cut or punctured), there was a marked enhancement of beta-1,3-glucanase activity. Thus the post-germinative beta-1, 3-glucanase activity in the micropylar endosperm portion might be brought about by wounding resulting from endosperm rupture by radicle penetration.  相似文献   

16.
Cathepsin L [EC 3.4.22.15] is secreted via lysosomal exocytosis by several types of cancer cells, including prostate and breast cancer cells. We previously reported that human cultured fibrosarcoma (HT 1080) cells secrete cathepsin L into the medium; this secreted cathepsin is 10-times more active than intracellular cathepsin. This increased activity was attributed to the presence of a 32-kDa cathepsin L in the medium. The aim of this study was to examine how this active 32-kDa cathepsin L is secreted into the medium. To this end, we compared the secreted active 32-kDa cathepsin L with lysosomal cathepsin L by using a novel gelatin zymography technique that employs leupeptin. We also examined the glycosylation and phosphorylation status of the proteins by using the enzymes endoglycosidase H [EC 3.2.1.96] and alkaline phosphatase [EC 3.1.3.1]. Strong active bands corresponding to the 32-kDa and 34-kDa cathepsin L forms were detected in the medium and lysosomes, respectively. The cell extract exhibited strong active bands for both forms. Moreover, both forms were adsorbed onto a concanavalin A-agarose column. The core protein domain of both forms had the same molecular mass of 30 kDa. The 32-kDa cathepsin L was phosphorylated, while the 34-kDa lysosomal form was dephosphorylated, perhaps because of the lysosomal marker enzyme, acid phosphatase. These results suggest that the active 32-kDa form does not enter the lysosomes. In conclusion, our results indicate that the active 32-kDa cathepsin L is secreted directly from the HT 1080 cells and not via lysosomal exocytosis.  相似文献   

17.
Imposition of water stress on germinated fenugreek (Trigonella foenum-graecum L.) seeds and isolated fenugreek endosperms after the beginning of galactomannan mobilisation caused a reduction in the rate of breakdown of the polysaccharide relative to unstressed controls. The activities, measured in vitro, of the three hydrolytic enzymes involved in the breakdown process (-d-galactosidase, EC 3.2.1.22;endo--d-mannanase, EC 3.2.1.78;exo--d-mannanase, EC 3.2.1.25) were not decreased. Although there was some accumulation of galactomannan-hydrolysis products in endosperms under stress, there was no clear correlation between sugar levels and the inhibition of galactomannan breakdown. When water stress was applied to fenugreek seeds after germination but before the beginning of galactomannan hydrolysis, both galactomannan breakdown and the development of the hydrolytic enzyme activities were inhibited. Washing of newly germinated seeds for 2 h in water prior to the imposition of stress gave partial relief of the inhibition of galactomannan mobilisation, partial recovery ofendo--d-mannanase levels, and full recovery of -d-galactosidase levels. It is argued: 1) that water stress after germination but before the beginning of galactomannan hydrolysis inhibits the production of hydrolytic enzymes in the endosperm, probably via decreased removal at lowered water content of diffusible inhibitory substances; and 2) that water stress after the beginning of galactomannan hydrolysis decreases the rate of galactomannan breakdown in vivo principally via decreased diffusion at lowered water content of enzymes from the aleurone layer through the storage tissue of the endosperm.Abbreviation PEG polyethyleneglycol  相似文献   

18.
Evidence derived from scanning electron microscope studies of the cell walls of germinated (malted) and unmalted sorghum grains suggests that portals (holes) develop in the endosperm cell walls during mobilization of the food reserves. It is proposed that amylolytic and proteolytic enzymes enter the endosperm cells through these portals and hyrolyse starch granules and associated storage proteins. Limited protease, pentosanase and/or-glucanase activities during malting may be responsible for the development of these portals in the endosperm cell walls. The latter persist in the malted grain.  相似文献   

19.
An exo-β-(1β3)-glucanase derived from Selerotinia libertiana induced growth of Avena sativa coleoptiles and degraded hemicelluloses and β-(1→4):(1→3) mixed linked glucan. However, neither endo-β-(1→4)- nor endo-β-(1→3)-glucanase activity could be detected in the enzyme preparation. Nojirimycin inhibited the glucan degradation caused by the enzyme but glucono-1,5-lactone did not. Another exo-β-(1→3)-glucanase derived from Basidiomycete QM 806 did not induce coleoptile growth and did not degrade the glucan. Growth-inducing properties of exo-β-(1→3)-glucanases are discussed.  相似文献   

20.
Seeds of Sesbania virgata (Cav.) Pers. (Leguminosae) have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls. After germination, it is hydrolysed by three enzymes: α-galactosidase (EC 3.2.1.22), endo-β-mannanase (EC 3.2.1.78) and β-mannosidase (EC 3.2.1.25). This work aimed at studying the effect of abscisic acid (ABA) on galactomannan degradation during and after germination. Seeds were imbibed in water or in 10−4 M ABA, and used to evaluate the effect of exogenous and endogenous ABA. Tissue printing was used to follow biochemical events by detecting and localising endo-β-mannanase in different tissues of the seed. The presence of exogenous ABA provoked a delay in the cellular disassembly of the endosperm and disappearance of endo-β-mannanase in the tissue. This led to a delay in galactomannan degradation. The testa (seed coat) of S. virgata contains endogenous ABA, which decreases ca. fourfold during storage mobilisation after germination, permitting the galactomannan degradation in the endosperm. Furthermore, endo-β-mannanase was immunolocalised in the testa, which has a living cell layer. The ABA appears to modulate storage mobilisation in the legume seed of S. virgata, and a cause–effect relationship between ABA (probably through testa) and activities of hydrolases is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号