首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question : The formation of large woody debris (LWD) piles during floods has significant impacts on riparian succession through pioneering plants often establishing in association with wood. We assess the importance of LWD for seed regeneration of riparian plants after a century‐scale flood disturbance in a semi‐arid environment. Location : The Sabie River within Kruger National Park in the semi‐arid northeast of South Africa. Methods : Our approach was to quantify the riparian soil seed bank, to record the frequency of establishment of riparian plants in woody debris piles, and to conduct experimental out‐plantings of common riparian trees in plots with and without LWD. Results : We found the abundance and diversity of seedlings were higher in soils taken from wood piles than from open reference areas, and most seedlings were herbaceous species. Surveys indicated that numbers of seedlings recorded within woody debris were significantly greater than in open reference areas or within established vegetation. Seedling establishment in various cover‐types also varied for different riparian tree species. Experimental out‐planting of seedlings of two riparian tree species (Philenoptera violacea and Combretum erythrophyllum) revealed that, after 433 days, planted seedlings survived only in woody debris piles. Conclusion : LWD formed after a large flood creates heterogeneous patches that may influence post‐disturbance regeneration of riparian vegetation by providing a variety of environmental niches for seedlings establishment. We suspect that higher seedling survival in LWD is due to increased moisture (particularly in the dry season) and nutrients, and protection from seasonal flooding and herbivory.  相似文献   

2.
1. The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4‐year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (Δ NBR) from satellite imagery to quantify the percentage of each catchment’s riparian and upland vegetation that burned at high and low severity. 2. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year‐to‐year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. 3. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. 4. These analyses suggest that interactions among fire, flow and stream habitat may increase inter‐annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area.  相似文献   

3.
An exceptionally powerful storm struck southwestern Washington in December 2007 causing large debris flows in two adjacent streams. The two affected streams had been studied prior to the storm, providing a rare opportunity to examine ecosystem recovery. We monitored the streams and their riparian zones for six years after the disturbances to determine whether recovery rates of biota, physical habitat, and water temperature differed, and if so, what factors affected resilience. Along both streams, the debris flows removed wide swaths of soil, rock, and coniferous riparian forests, widening the active channel and increasing solar exposure and summer water temperatures. Initially depauperate of vegetation, after four years red alder trees dominated the riparian plant communities. The warmer water, greater solar radiation, and unstable substrates likely contributed to variable benthic insect and tailed frog tadpole densities over time, although benthic insect communities became more similar after three years. The debris flows also decreased channel slopes and removed channel step barriers such that cutthroat trout were able to rapidly occupy habitats far upstream, but sculpins were slower to recolonize and both fish species exhibited some differences in recovery between the two streams. Crayfish were severely impacted by the debris flows; this may be due to attributes of their life history and the timing of the flows. Overall, we found that recolonizing aquatic species exhibited varying levels of resilience and recovery after the disturbances being related to the influence of physical habitat conditions, species dispersal ability, and the presence of nearby source populations.  相似文献   

4.
Large woody debris (LWD) was added to eight streams in the central Appalachians of West Virginia to determine if stream habitat could be enhanced and brook trout (Salvelinus fontinalis) populations increased. Brook trout populations were assessed one year prior to habitat manipulation and 3 years post-habitat manipulation. LWD was added by felling approximately 15 trees per 300 m stream reach. Four of the streams had LWD added to one 300 m reach with 300 m unmanipulated reaches upstream and downstream of the manipulated reach to observe within-stream effects of LWD additions on brook trout density. The remaining four streams had LWD added to three 300 m reaches and these streams were compared to those with only a single 300 m manipulated reach to observe the effects of the extent of habitat manipulation on brook trout density. New pools were formed by the addition of LWD, but overall pool area did not increase significantly in reaches where LWD was added. The relatively high gradient and coarse substrate of these streams may have precluded the added LWD from having a significant influence on stream channel morphology and habitat complexity. No pools were formed in the highest gradient stream, while the stream with the most pools formed had the lowest gradient. Brook trout populations fluctuated following habitat manipulations, and there was no overall effect of the LWD additions on within-stream variability in brook trout density. When there were significant differences among-streams with different extents of LWD additions, those streams receiving LWD additions over a large extent had the greatest brook trout densities. The full potential of added LWD to change stream habitat and influence on brook trout populations may take more time to develop than the 3 years post-manipulation period of this study.  相似文献   

5.
Field studies to examine the influence of woody debris on rainbow trout (Oncorhynchus mykiss) abundance through habitat modification were conducted in two small streams, the Horonai and Uenae streams, running through secondary deciduous forest in south-western Hokkaido, northern Japan. Reach-based woody debris volume (total woody debris volume per 100 m2 of study reach) was significantly correlated with the total basal area of riparian stands along the margins of the Horonai stream, but no significant relationship was evident between them for the Uenae stream. This inconsistency between the streams was considered to be a result of the difference in stream size (width, depth and discharge). Woody debris was the principal agent for pool formation, although it had a far smaller volume than that found in streams draining old-growth coniferous forest in North America, where most of the previous studies have been carried out. Untransported debris pieces of larger volume more effectively contributed to pool formation than smaller transported pieces. The volume of individual debris scour pools was positively correlated with the volume of woody debris associated with each. Similarly, reach-based pool volume increased with total woody debris volume, but the relationship was less clear in the Uenae stream, having more abundant transported woody debris than the Horonai stream. The biomass of rainbow trout in individual pools, which were regarded as the most preferred habitat type for stream salmonids, was correlated with pool volume. A positive relationship also existed between reach-based standing crop and pool volume. These results revealed that secondary deciduous forest, like old-growth coniferous forest, plays an important role in enhancing the carrying capacity for rainbow trout by supplying woody debris which promoted preferred habitat formation.  相似文献   

6.
Pettit NE  Naiman RJ 《Oecologia》2005,145(3):434-444
We investigated whether large woody debris (LWD) piles create nodes of environmental resources that contribute to the recovery of riparian vegetation and that also augment the heterogeneity and resilience of the riverine system. River and riparian systems are typified by a large degree of heterogeneity and complex interactions between abiotic and biotic elements. Disturbance such as floods re-distribute the resources, such as LWD, and thereby add greater complexity to the system. We examined this issue on a semi-arid savanna river where a ~100-year return interval flood in 2000 uprooted vegetation and deposited substantial LWD. We investigated the micro-environment within the newly established LWD piles and compared this with conditions at adjacent reference sites containing no LWD. We found soil nutrient concentrations to be significantly higher in LWD piles compared with the reference plots (total N +19%, available P +51%, and total C +36%). Environmental variables within LWD piles and reference sites varied with landscape position in the river–riparian landscape and with LWD pile characteristics. Observed differences were generally between piles located in the terrestrial and riparian areas as compared to piles located on the macro-channel floor. After 3 years the number and cover of woody species were significantly higher when associated with LWD piles, regardless of landscape position or pile type. We conclude that LWD piles formed after large floods act as resource nodes by accumulating fine sediments and by retaining soil nutrients and soil moisture. The subsequent influence of LWD deposition on riparian heterogeneity is discerned at several spatial scales including within and between LWD piles, across landscape positions and between channel types. LWD piles substantially influence the initial developmental of riparian vegetation as the system regenerates following large destructive floods.  相似文献   

7.
Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg depth, and large woody debris (LWD) volumes are potential metrics of habitat complexity calculated from these survey data. We used 42 intensive dye-transit studies to demonstrate the relevance of these easily measured channel habitat complexity metrics to transient hydraulic (“dead zone”) storage, a channel process important for biotic habitat as well as retention and “spiraling” of dissolved and particulate nutrients. We examined transient storage and channel morphology in small gravel and cobble-bedded upland streams (wetted width 2–5 m; slopes 2.6–8.3%) representing a wide range of flow stages, LWD loading, and channel complexity, including measurements before and after LWD was added to enhance fish habitat. While transient storage volume fraction decreased as flow stage increased in simple channels, those with complex morphology and well-developed riparian vegetation maintained high transient storage fractions even during storm flows. LWD additions increased transient storage and channel complexity over the 2 years of post-treatment measurements. We predict with considerable precision two different formulations of transient hydraulic storage fraction using single-variable linear regressions on residual depth (R 2 = 0.61–0.89), thalweg depth variance (R 2 = 0.64–0.91), or large woody debris volume (R 2 = 0.48–0.74). Demonstration of these likely causal associations contributes to understanding the process of transient storage and redefines the use of thalweg profile metrics as a new approach to quantifying morphologic and hydraulic complexity in streams.  相似文献   

8.
To assess the effects of timber harvesting on headwater streams in upland forests, benthic community structure was contrasted among four dominant forest management types (old growth, red alder-dominated young growth, conifer-dominated young growth, clearcut) and instream habitats (woody debris, cobble, gravel) in southeastern Alaska. Benthos in streams of previously harvested areas resulted in increased richness, densities and biomass relative to old growth types, particularly in young growth stands with a red alder-dominated riparian canopy. Woody debris and gravel habitats supported a combination of higher densities and biomass of invertebrates than cobble habitats. In addition, woody debris also supported a richer and more diverse invertebrate fauna than either cobble or gravel substrates. Maintaining both a woody debris source and a red alder component in regenerating riparian forests following timber harvesting should support greater invertebrate densities and diversity following clearcutting.  相似文献   

9.
Expansion of woody vegetation into areas that were historically grass-dominated is a significant contemporary threat to grasslands, including native tallgrass prairie ecosystems of the Midwestern United States. In tallgrass prairie, much of this woody expansion is concentrated in riparian zones with potential impacts on biogeochemical processes there. Although the effects of woody riparian vegetation on denitrification in both riparian soils and streams have been well studied in naturally wooded ecosystems, less is known about the impacts of woody vegetation encroachment in ecosystems that were historically dominated by herbaceous vegetation. Here, we analyze the effect of afforestation and subsequent woody plant removal on riparian and benthic denitrification. Denitrification rates in riparian soil and selected benthic compartments were measured seasonally in naturally grass-dominated riparian zones, woody encroached riparian zones, and riparian zones with woody vegetation removed in two separate watersheds. Riparian soil denitrification was highly seasonal, with the greatest rates in early spring. Benthic denitrification also exhibited high temporal variability, but no seasonality. Soil denitrification rates were greatest in riparian zones where woody vegetation was removed. Additionally, concentrations of nitrate, carbon, and soil moisture (indicative of potential anoxia) were greatest in wood removal soils. Differences in the presence and abundance of benthic compartments reflected riparian vegetation, and may have indirectly affected denitrification in streams. Riparian soil denitrification increased with soil water content and NO3 ?. Management of tallgrass prairies that includes removal of woody vegetation encroaching on riparian areas may alter biogeochemical cycling by increasing nitrogen removed via denitrification while the restored riparian zones return to a natural grass-dominated state.  相似文献   

10.
Riparian ecosystems have unique biodiversity, are highly sensitive to disturbance and anthropogenic influence. As world water resources become scarcer, scientists predict greater competition among species for water resources. Indeed, increased encroachment of upland plants into the riparian zone is already occurring, irreversibly changing riparian plant communities. Since semi-arid regions such as Mediterranean-type ecosystems are likely to follow this same trajectory, assessing the contributions of riparian versus upland (sclerophyllous) plants to community composition is important. A survey of seventy 2 km-long riparian transects on the Sado and Guadiana watersheds in southern Portugal assessed (1) the woody riparian plant community composition, (2) how much richness is due to strictly riparian plants versus sclerophyllous upland plants, and (3) which combinations of biotic and abiotic factors allow higher species richness in the strictly riparian, sclerophyllous, and overall plant communities. The survey detected 53 different woody plant species (28 endemic) across all communities. Riparian community richness was on average 16 species, seven of which were strictly riparian and the remainder being sclerophyllous, exotic species or fruit trees. Sclerophyllous plant species occurred consistently across sampling units (90% of transects). On average, 46% of the total woody plant community richness was due to strictly riparian plants and 28% was due to sclerophyllous plants. Community richness was positively affected by the area of shrubs in the riparian zone and by the absence of human activities and goats. Surrounding landscape pattern only affected the strictly riparian plant richness. These results suggest that natural and human-mediated disturbances in riparian ecosystems create gaps and clearings for which riparian and sclerophyllous plants compete. Establishment success seems to be related to the propagule pressure of the neighbouring landscape, its diversity and density, as well as the presence of herbivores. Preserving strictly riparian plants, removing exotic species, preventing grazing, and promoting riparian values (recreation, aesthetics and the provision of ecosystem services) will aid the future conservation of the unique biodiversity of riparian ecosystems.  相似文献   

11.
1. The effects of woody debris on stream habitat of juvenile masu salmon ( Oncorhynchus masou ) were examined at two spatial scales, stream reach and channel unit, for first to thirdorder tributaries of the Teshio River in northern Hokkaido, Japan. The fortyeight study reaches were classified into three distinct types: coarsesubstrate steppool (CSP), coarsesubstrate poolriffle (CPR) and finesubstrate poolriffle (FPR) reaches. Each reach type included reaches with different riparian settings, broadly classified as forest (relatively undisturbed forest and secondary forest after fires) or grassland (bamboo bushland and pasture).
2. The reachscale analyses showed that neither total pool volume nor pooltopool spacing was correlated with woody debris abundance in any of the three reach types. Masu salmon density was positively correlated with both woodydebris cover area and total cover area, but not with total pool volume in the reaches.
3. Channelunitscale analyses revealed that woody debris reduced nonpool velocity, increased pool depth and retained fine sediment in pools in FPR reaches, where the size of woody debris was very large relative to the substrate material size. However, woody debris did not influence any of the hydraulic variables (depth, velocity, substrate) in either nonpools or pools of CSP and CPR reaches. Habitat use by masu salmon in nonpools or pools was affected by woodydebris cover area or total cover area rather than by hydraulic variables in any of the reach types.
4. The effects of woody debris on habitat at the reach and channelunit scales in the study area were less than those indicated by previous work in the Pacific Northwest, North America, owing to the relatively small size of the riparian trees. However, the overall results suggested that woody debris in the study area contributed to masu salmon habitat by providing cover at the smaller, microhabitat scale.  相似文献   

12.
Grasslands are threatened globally due to the expansion of woody plants. The few remaining headwater streams within tallgrass prairies are becoming more like typical forested streams due to rapid conversion of riparian zones from grassy to wooded. Forestation can alter stream hydrology and biogeochemistry. We estimated the rate of riparian woody plant expansion within a 30 m buffer zone surrounding the stream bed across whole watersheds at Konza Prairie Biological Station over 25 years from aerial photographs. Watersheds varied with respect to experimentally-controlled fire and bison grazing. Fire frequency, presence or absence of grazing bison, and the historical presence of woody vegetation prior to the study time period (a proxy for proximity of propagule sources) were used as independent variables to predict the rate of riparian woody plant expansion between 1985 and 2010. Water yield was estimated across these years for a subset of watersheds. Riparian woody encroachment rates increased as burning became less frequent than every two years. However, a higher fire frequency (1–2 years) did not reverse riparian woody encroachment regardless of whether woody vegetation was present or not before burning regimes were initiated. Although riparian woody vegetation cover increased over time, annual total precipitation and average annual temperature were variable. So, water yield over 4 watersheds under differing burn frequencies was quite variable and with no statistically significant detected temporal trends. Overall, burning regimes with a frequency of every 1–2 years will slow the conversion of tallgrass prairie stream ecosystems to forested ones, yet over long time periods, riparian woody plant encroachment may not be prevented by fire alone, regardless of fire frequency.  相似文献   

13.
Arctic moistening will affect the circumpolar forested riparian ecosystems. Upward trends observed for precipitation in high latitudes illustrate that the moistening may be underway to influence the woody biomass production near the inland waters, lakes and streams with effects on carbon pools and fluxes. Although the flooding and waterlogging tolerance of seedlings has been investigated, our understanding of responses in mature trees is still limited. Here we employ tree‐ring δ13C and width data from a subarctic riparian setting in Lapland, where artificially high lake level (HLL) has already altered the ecophysiological and growth responses of riparian Pinus sylvestris trees to external drivers under conditions simulating moister environment. Prior to the HLL event, the carbon assimilation rate was primarily limited by irradiance as reflected in the δ13C data and the radial growth of south‐facing riparian trees remained increased in comparison to shaded upland trees. By contrast, the riparian trees were not similarly benefited during the HLL period when reduced assimilation depleted the riparian in comparison to upland δ13C despite of increased irradiance. As a result, the radial growth of riparian trees was markedly reduced over the HLL event while the upland trees benefited from increased irradiance and summer time warming. Although the production of biomass at high latitudes is commonly considered temperature‐limited, our results highlight the increasing role of Arctic moistening to limit the growth when increased precipitation (cloudiness) reduces the incoming solar radiation in general and when the riparian habitat becomes increasingly waterlogged in particular. The effects of high‐latitude warming to induce higher biomass productivity may be restricted by negative feedbacks.  相似文献   

14.
1. Amphibians are recognized both for their sensitivity to environmental perturbations and for their usefulness as cost-effective biometrics of ecosystem integrity (=system health).
2. Twenty-three years of research in headwater streams in the Klamath-Siskiyou and North Coast Bioregions of the Pacific Northwest, U.S.A., showed distinct patterns in the distribution of amphibians to variations in water temperature, % fine sediments and the amount of large woody debris (LWD).
3. Here, we review seven studies that demonstrate connections between species presence and abundance and these three in-stream variables. These data were then used to calculate realized niches for three species, the southern torrent salamander, the larval coastal tailed frog and the larval coastal giant salamander, relative to two of these environmental stressors (water temperature and % fine sediments). Moreover, multivariate generalized additive models were used to predict the presence of these three amphibians when these three stressors act in concert.
4. Stream-dwelling amphibians are shown to be extremely sensitive to changes in water temperature, amounts of fine sediment and LWD, and specific thresholds and ranges for a spectrum of animal responses can be used to manage for headwater tributary ecosystem integrity.
5. Consequently, amphibians can provide a direct metric of stream ecosystem integrity acting as surrogates for the ability of a stream network to support other stream-associated biota, such as salmonids, and their related ecological services.  相似文献   

15.
Conservation of forested riparian ecosystems is of international concern. Relatively little is known of the structure, composition, diversity, and extent of riparian ecosystems in Mexico. We used high- and low-resolution satellite imagery from 2000 to 2006, and ground-based sampling in 2006, to assess the spatial pattern, extent, and woody plant composition of riparian forests across a range of spatial scales for the state of Sonora, Mexico. For all 3rd and higher order streams, river bottomlands with riparian forests occupied a total area of 2,301 km2. Where forested bottomlands remained, on average, 34% of the area had been converted to agriculture while 39% remained forested. We estimated that the total area of riparian forest along the principal streams was 897 km2. Including fencerow trees, the total forested riparian area was 944 km2, or 0.5% of the total land area of Sonora. Ground-based sampling of woody riparian vegetation consisted of 92, 50 m radius circular plots. About 79 woody plant species were noted. The most important tree species, based on cover and frequency, were willow species Salix spp. (primarily S. goodingii and S. bonplandiana), mesquite species Prosopis spp. (primarily P. velutina), and Fremont cottonwood Populus fremontii. Woody riparian taxa at the reach scale showed a trend of increasing diversity from north to south within Sonora. Species richness was greatest in the willow-bald cypress Taxodium distichum var. mexicanum—Mexican cottonwood P. mexicana subsp. dimorphia ecosystem. The non-native tamarisk Tamarix spp. was rare, occurring at just three study reaches. Relatively natural stream flow patterns and fluvial disturbance regimes likely limit its establishment and spread.  相似文献   

16.
Woody debris is an important habitat component, particularly in streams that lack other hard substrates. Research suggests a general relationship between increasing invertebrate density, diversity, and taxa richness with increasing wood decay in lotic systems, with some authors observing invertebrate taxonomic succession as decay proceeds. We designed a field experiment using colonization of known-aged woody debris in two streams to examine patterns in invertebrate colonization, density, diversity, richness, and succession. After aging woody debris 0–6 weeks in laboratory tanks and then placing the debris in the two subtropical, coastal plain streams for five additional weeks, we did not detect any statistical relationship between invertebrate density, diversity, evenness, richness, or life-history pattern with increasing woody debris decay, nor did we detect any relationships between the colonization or abundance of individual taxa and the decompositional state of the wood. In this paper, we propose two non-exclusive explanations for these trends based on opportunistic colonization and evolutionary filtering. Despite the apparent unimportance of decompositional state, woody debris still supported many taxa and remains an important habitat component. Our research further supports the importance of flooding and maintenance of intact riparian and floodplain forests to the woody debris dynamics and macroinvertebrates in coastal plain lotic systems.  相似文献   

17.
Anthropogenic nitrogen pollution is a critical problem in freshwaters. Although riverbeds are known to attenuate nitrate, it is not known if large woody debris (LWD) can increase this ecosystem service through enhanced hyporheic exchange and streambed residence time. Over a year, we monitored the surface water and pore water chemistry at 200 points along a ~ 50 m reach of a lowland sandy stream with three natural LWD structures. We directly injected 15N-nitrate at 108 locations within the top 1.5 m of the streambed to quantify in situ denitrification, anammox and dissimilatory nitrate reduction to ammonia, which, on average, contributed 85, 10 and 5% of total nitrate reduction, respectively. Total nitrate reducing activity ranged from 0 to 16 µM h?1 and was highest in the top 30 cm of the stream bed. Depth, ambient nitrate and water residence time explained 44% of the observed variation in nitrate reduction; fastest rates were associated with slow flow and shallow depths. In autumn, when the river was in spate, nitrate reduction (in situ and laboratory measures) was enhanced around the LWD compared with non-woody areas, but this was not seen in the spring and summer. Overall, there was no significant effect of LWD on nitrate reduction rates in surrounding streambed sediments, but higher pore water nitrate concentrations and shorter residence times, close to LWD, indicated enhanced delivery of surface water into the streambed under high flow. When hyporheic exchange is too strong, overall nitrate reduction is inhibited due to short flow-paths and associated high oxygen concentrations.  相似文献   

18.
Riparian treatments, consisting of 3‐ to 4‐m buffer strips, stream bank stabilization, and rock‐lined stream crossings, were installed in two streams with livestock grazing to reduce sediment loading and stream bank erosion. Cedar Run and Slab Cabin Run, the treatment streams, and Spring Creek, an adjacent reference stream without riparian grazing, were monitored prior to (1991–1992) and 3–5 years after (2001–2003) riparian buffer installation to assess channel morphology, stream substrate composition, suspended sediments, and macroinvertebrate communities. Few changes were found in channel widths and depths, but channel‐structuring flow events were rare in the drought period after restoration. Stream bank vegetation increased from 50% or less to 100% in nearly all formerly grazed riparian buffers. The proportion of fine sediments in stream substrates decreased in Cedar Run but not in Slab Cabin Run. After riparian treatments, suspended sediments during base flow and storm flow decreased 47–87% in both streams. Macroinvertebrate diversity did not improve after restoration in either treated stream. Relative to Spring Creek, macroinvertebrate densities increased in both treated streams by the end of the posttreatment sampling period. Despite drought conditions that may have altered physical and biological effects of riparian treatments, goals of the riparian restoration to minimize erosion and sedimentation were met. A relatively narrow grass buffer along 2.4 km of each stream was effective in improving water quality, stream substrates, and some biological metrics.  相似文献   

19.
20.
Swan CM  Palmer MA 《Oecologia》2006,147(3):469-478
Leaf litter derived from riparian trees can control secondary production of detritivores in forested streams. Species-rich assemblages of leaf litter reflect riparian plant species richness and represent a heterogeneous resource for stream consumers. Such variation in resource quality may alter consumer growth and thus the feedback on leaf breakdown rate via changes in feeding activity. To assess the consequences of this type of resource heterogeneity on both consumer growth and subsequent litter breakdown, we performed a laboratory experiment where we offered a leaf-shredding stream detritivore (the stonefly Tallaperla maria, Peltoperlidae) ten treatments of either single- or mixed-species leaf litter. We measured consumer growth rate, breakdown rate and feeding activity both with and without consumers for each treatment and showed that all three variables responded to speciose leaf litter. However, the number of leaf species was not responsible for these results, but leaf species composition explained the apparent non-additive effects. T. maria growth responded both positively and negatively to litter composition, and growth on mixed-litter could not always be predicted by averaging estimates of growth in single-species treatments. Furthermore, breakdown and feeding rates in mixed litter treatments could not always be predicted from estimates of single-species rates. Given that species richness and composition of senesced leaves in streams reflects riparian plant species richness, in-stream secondary production of detritivores and organic matter dynamics may be related to species loss of trees in the riparian zone. Loss of key species may be more critical to maintaining such processes than species richness per se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号