首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以SVDV外壳蛋白基因序列为基础,采用Chou-Fasman法、Garnier-Robson 法和Karplus-Schulz法预测蛋白质的二级结构;按Kyte-Doolittle方案、Emini方案和Jameson-Wolf方案预测SVDV外壳蛋白的B细胞表位。预测结果表明,SVDV外壳蛋白的二级结构较为复杂,含有较多的转角和无规则卷曲等柔性区域以及α-螺旋和β-折叠区段;SVDV外壳蛋白的VP1、VP2和VP3上均有多个区域为B细胞优势表位,其中,VP1蛋白的B细胞表位优势区域比VP2和VP3蛋白的多,与已鉴定的B细胞表位相比较,该方法预测的结果有较高的准确度。为实验确定SVDV外壳蛋白的B细胞表位和反向疫苗学设计提供理论基础。  相似文献   

2.
以猪水泡病病毒RNA为模板,应用反转录聚合酶链式反应(RT-PCR)技术,扩增了849bp的VP1基因,通过T-A克隆技术,将VP1基因片段克隆至pMD18-T克隆载体质粒中,构建SVDVVP1基因克隆重组质粒,进行核苷酸序列分析。然后亚克隆插入pBAD/ThioTOPO表达载体,经测序鉴定,筛选获得VP1基因正向插入、有正确读码框的阳性克隆,成功构建了猪水泡病病毒VP1基因重组表达载体。经L-Arabinose诱导表达,可稳定、高效地表达VP1蛋白抗原。SDS-PAGE结果表明,以终浓度为0.002%的L-阿拉伯醛糖进行诱导,5h后表达可达到高峰,表达蛋白为融合蛋白,质量约47.13kDa,表达产量约占菌体总蛋白的16%。Westernblotting检测表明,诱导的蛋白能与猪水泡病阳性血清发生特异性反应。融合蛋白中含有猪水泡病病毒VP1蛋白抗原,为应用该表达蛋白抗原制备SVD免疫血清学诊断试剂和新型疫苗构建奠定基础。  相似文献   

3.
猪水泡病病毒的提纯电镜观察及电泳分析   总被引:1,自引:0,他引:1  
薛景山  赵启祖 《病毒学报》1993,9(2):156-159
  相似文献   

4.
The N-terminal region of VP1 of swine vesicular disease virus (SVDV) is highly antigenic in swine, despite its internal location in the capsid. Here we show that antibodies to this region can block infection and that allowing the virus to attach to cells increases this blockage significantly. The results indicate that upon binding to the cell, SVDV capsid undergoes a conformational change that is temperature independent and that exposes the N terminus of VP1. This process makes this region accessible to antibodies which block virus entry.  相似文献   

5.
利用RT_PCR技术 ,以SVDVHK’70为材料 ,扩增出VP2基因抗原区。将目的基因的PCR扩增产物直接进行双酶切 ,然后将酶切产物与酶切后的表达载体pGEX 4T_1进行连接 ,转化BL2 1菌体并提质粒 ,经酶切、PCR鉴定为阳性的重组质粒命名为pGEX_VP2 ,并测序。测序结果表明 ,目的基因插入的位置、大小和读码框均正确 ,表达载体构建成功。将含有阳性质粒的BL2 1菌液经IPTG诱导后进行SDS_PAGE分析 ,出现预期的目的蛋白条带 ,此目的蛋白经Westernblot检测确定其有免疫活性。  相似文献   

6.
猪水泡病病毒VPl基因抗原区的原核表达   总被引:1,自引:0,他引:1  
利用RT-PCR和nested PCR(nPCR)技术扩增出猪水泡病病毒VPl基因的抗原区,将其克隆到表达载体pProEX-HTb中,获得重组质粒,经PCR、酶切和序列分析鉴定表明,目的基因插入的位置、大小和读码框均正确。将重组质粒导入BL21(DE3),经IPTG诱导表达后SDS-PAGE检测表明,重组菌能表达猪水泡病病毒VPl抗原区蛋白;Western blot检测表明,诱导表达的抗原区蛋白能与猪水泡病阳性血清发生特异性反应。  相似文献   

7.
从猪水泡病病毒(SVDV)细胞培养物的PEG浓缩毒中提取病毒RNA,经RT-PCR和套式PCR扩增病毒主要保护性抗原蛋白基因,将扩增产物1.6kb插入pUC18载体中,经亚克隆后用双脱氧链终止法测定其序列,与已发表的SVDV分离物该区序列作比较,核苷酸同源性为96%-97%,氨基酸同源性为98%,参与构成SVDV中和性抗原位点的几个氨基酸残基均很保守;与已发表的柯萨奇B5病毒的对应序列比较,两者核苷酸序列同源性为77%,而推导的氨基酸顺序同源性竞高达92%。本文结果有助于SVDV的分子流行病学研究,并为其和柯萨奇B5病毒的相互关系提供参考数据,为SVDV新型疫苗研究提供了基础材料  相似文献   

8.
9.
Culture supernatants from retroviral packaging cells carrying the human Fas ligand (FasL) gene killed both human (Jurkat) and mouse (LB27.4) targets within 5 h of incubation. Cytotoxicity was found both in a fraction >/=500 kDa and a fraction between 50 and 500 kDa. Following ultracentrifugation, the activity in the >/=500-kDa fraction was concentrated in the pellet (FasL vector preparation (VP)), which was also infective when added to NIH-3T3 cells. Both Polybrene and poly-l -lysine significantly enhanced the cytotoxicity of FasL VP but not anti-Fas mAb, soluble FasL (sFasL), and cell-associated FasL. In the presence of Polybrene, FasL VP killed targets that are resistant to anti-Fas mAb and sFasL. The infectivity but not FasL cytotoxicity of FasL VP was sensitive to irradiation and heat shock. By contrast, cytotoxicity of FasL VP could be enhanced or inhibited depending on the doses of anti-FasL mAb. Interestingly, the infectivity of FasL VP was specifically enhanced by anti-FasL mAb, suggesting that a nonviral gene product could be used to regulate the behavior of the retroviral vector. Thus, in addition to expressing potent FasL cytotoxicity, the FasL VP exhibits unique properties heretofore not attributed to anti-Fas mAb, sFasL, and cell-associated FasL. Our study raises the possibility of using the retroviral gene-packaging technology to make powerful, versatile, and regulatable bioactive vesicles expressing a predetermined function of the protein encoded by the target gene.  相似文献   

10.
Virulent and avirulent strains of swine vesicular disease virus (SVDV), a picornavirus, have been characterized previously. The major determinants for attenuation have been mapped to specific residues in the 1D-2A-coding region. The properties of the 2A proteases from the virulent and avirulent strains of SVDV have now been examined. Both proteases efficiently cleaved the 1D/2A junction in vitro and in vivo. However, the 2A protease of the avirulent strain of SVDV was much less effective than the virulent-virus 2A protease at inducing cleavage of translation initiation factor eIF4GI within transfected cells. Hence the virulent-virus 2A protease is much more effective at inhibiting cap-dependent protein synthesis. Furthermore, the virulent-virus 2A protease strongly stimulated the internal ribosome entry sites (IRESs) from coxsackievirus B4 and from SVDV, while the avirulent-virus 2A protease was significantly less active in these assays. Thus, the different properties of the 2A proteases from the virulent and avirulent strains of SVDV in regulating protein synthesis initiation reflect the distinct pathogenic properties of the viruses from which they are derived. A single amino acid substitution, adjacent to His21 of the catalytic triad, is sufficient to confer the characteristics of the virulent-strain 2A protease on the avirulent-strain protease. It is concluded that the efficiency of picornavirus protein synthesis, controlled directly by the IRES or indirectly by the 2A protease, can determine virus virulence.  相似文献   

11.
Recent developments on virus-like particles have demonstrated their potential in transfecting eucaryotic cells. In the case of particles based on the major coat protein VP1 of polyoma virus, transfection occurs via binding of VP1 to sialic acids. Since sialic acid is present on almost every eucaryotic cell line, this results in an unspecific cell targeting. Generation of a cell-type specificity of this system would imply the presentation of a new function on the surface of VP1. To analyze whether a new functional protein can be placed on VP1, we inserted dihydrofolate reductase from Escherichia coli as a model protein. The effect of such an insertion on both VP1 and the inserted protein was investigated, respectively. The function of VP1, like the formation of pentameric capsomers and its ability to assemble into capsids, was not influenced by the insertion. The inserted dihydrofolate reductase showed major changes when compared to the wild-type form. The thermal stability of the enzyme was dramatically reduced in the fusion protein; nevertheless, the dihydrofolate reductase proved to be a fully active enzyme with only slightly increased K(M) values for its substrates. This model system provides the basis for further modifications of the VP1 protein to achieve an altered surface of VP1 with new properties.  相似文献   

12.
本实验研究了SVDV在微细胞和微胞质体两种非完整细胞体系内的复制。用秋水仙素处理IB-RS-2细胞,在含有松胞素B的Ficoll 400不连续梯度中进行高速离心,制备了大量的微细胞。微细胞在正常的培养条件下60小时后仍有70%以上存活,用SVDV感染只需4—5小时就几乎全部脱落。并证明微细胞能繁殖出有感染力的子代病毒。用松胞素B去核技术制备的微胞质体,运用扫描电镜和显微放射自显影的方法证实了SVDV可以在微胞质体内复制病毒RNA,并引起微胞质体病变。同时纯化了用松胞素B处理悬浮的IB-RS-2细胞而制备的大量的微胞质体,SVDV感染后,可以产生一定数量的有感染力的子代病毒。虽然滴度低于完整细胞繁殖的病毒,但证明了SVDV可以利用微胞质体中少量的细胞成分和酶类完成其感染、复制和装配一系列繁殖过程,产生有感染力的子代病毒。  相似文献   

13.
Chicken anemia virus (CAV) is an anemia agent of breeder and young chicks. This virus is the cause of economic losses across the chicken industry worldwide as a consequence of severe anemia and immunodeficiency among the birds. Two genes of CAV encoding the VP1 and VP2 proteins were cloned and expressed in Escherichia coli BL21 (DE3). A Western blot assay using His-tag antiserum was used to assess the expression level of the CAV viral proteins in E. coli. The results demonstrated that only full-length VP2 can be successfully expressed in E. coli, but not full-length VP1. A serial of N-terminus deletions of the VP1 protein, VP1Nd30, VP1Nd60 and VP1 Nd129, were created using PCR in order to improve VP1 expression. The results demonstrated that all three of these recombinant VP1 mutant proteins can be expressed in E. coli. VP1Nd129 protein demonstrates the highest expression level compared to the other two proteins. The specificity of Nd129-VP1 and VP2 protein were confirmed by mass spectrometry. By comparing the expression level of VP1Nd129 and VP2 protein after the addition of IPTG, the results indicated that the VP1Nd129 protein gave a higher level of protein expression than VP2. The highest yields of VP1Nd129 and VP2 were 26.2 and 15.5 mg/L, respectively, after IPTG induction with 0.1 mM IPTG for 6 h, respectively. The identification of the optimized conditions for production of the CAV viral proteins VP1 and VP2 will allow them to be used in the future as an antigen for the development of vaccines and diagnostic tests.  相似文献   

14.
The role of phosphorylation in the dissociation of structural components of the herpes simplex virus type 1 (HSV-1) tegument was investigated, using an in vitro assay. Addition of physiological concentrations of ATP and magnesium to wild-type virions in the presence of detergent promoted the release of VP13/14 and VP22. VP1/2 and the UL13 protein kinase were not significantly solubilized. However, using a virus with an inactivated UL13 protein, we found that the release of VP22 was severely impaired. Addition of casein kinase II (CKII) to UL13 mutant virions promoted VP22 release. Heat inactivation of virions or addition of phosphatase inhibited the release of both proteins. Incorporation of radiolabeled ATP into the assay demonstrated the phosphorylation of VP1/2, VP13/14, VP16, and VP22. Incubation of detergent-purified, heat-inactivated capsid-tegument with recombinant kinases showed VP1/2 phosphorylation by CKII, VP13/14 phosphorylation by CKII, protein kinase A (PKA), and PKC, VP16 phosphorylation by PKA, and VP22 phosphorylation by CKII and PKC. Proteolytic mapping and phosphoamino acid analysis of phosphorylated VP22 correlated with previously published work. The phosphorylation of virion-associated VP13/14, VP16, and VP22 was demonstrated in cells infected in the presence of cycloheximide. Use of equine herpesvirus 1 in the in vitro release assay resulted in the enhanced release of VP10, the homolog of HSV-1 VP13/14. These results suggest that the dissociation of major tegument proteins from alphaherpesvirus virions in infected cells may be initiated by phosphorylation events mediated by both virion-associated and cellular kinases.  相似文献   

15.
Swine vesicular disease virus (SVDV) is an Enterovirus of the family Picornaviridae that causes symptoms indistinguishable from those of foot-and-mouth disease virus. Phylogenetic studies suggest that it is a recently evolved genetic sublineage of the important human pathogen coxsackievirus B5 (CBV5), and in agreement with this, it has been shown to utilize the coxsackie and adenovirus receptor (CAR) for cell entry. The 3.0-A crystal structure of strain UK/27/72 SVDV (highly virulent) reveals the expected similarity in core structure to those of other picornaviruses, showing most similarity to the closest available structure to CBV5, that of coxsackievirus B3 (CBV3). Features that help to cement together and rigidify the protein subunits are extended in this virus, perhaps explaining its extreme tolerance of environmental factors. Using the large number of capsid sequences available for both SVDV and CBV5, we have mapped the amino acid substitutions that may have occurred during the supposed adaptation of SVDV to a new host onto the structure of SVDV and a model of the SVDV/CAR complex generated by reference to the cryo-electron microscopy-visualized complex of CBV3 and CAR. The changes fall into three clusters as follows: one lines the fivefold pore, a second maps to the CAR-binding site and partially overlaps the site for decay accelerating factor (DAF) to bind to echovirus 7 (ECHO7), and the third lies close to the fivefold axis, where the low-density lipoprotein receptor binds to the minor group of rhinoviruses. Later changes in SVDV (post-1971) map to the first two clusters and may, by optimizing recognition of a pig CAR and/or DAF homologue, have improved the adaptation of the virus to pigs.  相似文献   

16.
Therapeutic application of virus-based delivery systems often implies a change of the tropism of these vectors. This can be achieved by insertion of polypeptides (e.g., antibody fragments) in viral coat proteins. Such fusion proteins have only been used in viral vectors so far and, as part of a virus, they have not been available for a detailed biophysical characterization. We analyzed a fusion protein called VP1-Z, which is based on the polyoma virus coat protein VP1 and protein Z. Protein Z is an engineered antibody-binding domain derived from protein A from Staphylococcus aureus. The fusion VP1-Z was constructed by insertion of protein Z in the HI-loop of VP1. As wild-type VP1, VP1-Z formed pentameric capsomers and assembled to VLPs in vitro. The stability of these particles was very similar compared to that of VLPs of wild-type VP1. Protein Z was fully structured in the fusion protein and was still capable of binding antibodies on the surface of VLPs of VP1-Z. Using this fusion protein, we could change the tropism of polyoma VLPs toward cells presenting on their surface the antigen of the coupled antibody.  相似文献   

17.
Two experiments involving the transfer of embryos from donors infected with swine vesicular disease virus (SVDV) to "clean" recipients were carried out. In Experiment 1, 47 embryos were collected from 4 SVDV-infected donors and transferred to 2 recipients that subsequently produced 10 piglets. All of the recipients and piglets remained seronegative for SVDV. In addition to the transfers, 10 embryos and 58 unfertilized eggs from the infected donors were assayed in vitro and found to be negative for SVDV infectivity. A fifth donor was also inoculated with SVDV in this experiment, but it could not be demonstrated that infection had occurred. This SVDV-exposed donor provided two embryos for transfer and one embryo and two unfertilized eggs for in vitro assay. In Experiment 2, 158 embryos from 9 infected donors were transferred to 7 recipients, resulting in 12 piglets. A total of 7 embryos and 37 unfertilized eggs were assayed in vitro. The recipients, piglets, and embryos/eggs were all negative for SVDV infectivity. Although a final conclusion on the safety of using embryo transfer for the control of swine vesicular disease (SVD) is not possible, the results obtained justify additional studies.  相似文献   

18.
【目的】研究中华蜜蜂囊状幼虫病毒(Chinese sacbrood virus, CSBV)VP1蛋白的分子进化特征及遗传多样性。【方法】利用RT-PCR方法,克隆了8株CSBV北京分离株VP1蛋白的基因编码区。【结果】序列分析表明,VP1蛋白基因编码区开放阅读框长945 bp,编码315个氨基酸,推测编码蛋白的相对分子量和等电点分别为35.42 kDa和9.23,具有亲水性和免疫原性。序列同源性分析表明,不同年份CSBV北京分离株VP1蛋白氨基酸序列间差异较小,仅个别氨基酸存在差异。北京分离株与辽宁分离株及越南分离株VP1核苷酸序列一致性达93%,与印度及韩国分离株VP1核苷酸序列一致性达92%,与英国分离株VP1核苷酸序列一致性最低,为88%。序列分析同时表明,CSBV北京分离株VP1蛋白序列存在特有的序列特征,同其他地区分离株比较,北京分离株VP1蛋白序列中存在着氨基酸的插入突变。序列替换率分析表明,亚洲型分离株间序列替换率低于亚洲分离株与欧洲分离株间的替换率。构建原核表达载体pEASY-E1-VP1,经IPTG诱导,CSBV VP1蛋白在大肠杆菌Escherichia coli BL21(DE3)pLysS菌株中表达。【结论】本研究提示CSBV不同分离株基因序列存在变异,结果为进一步研究CSBV致病性分化的分子机理奠定了基础。  相似文献   

19.
P Z O'Farrell  H M Goodman 《Cell》1976,9(2):289-298
The major capsid protein (VP1) of simian virus 40 (SV40) has been analyzed by two-dimensional electrophoresis. This system separates protein according to isoelectric point by isoelectric-focusing, and according to molecular weight by sodium dodecylsulphate electrophoresis (O'Farrell, 1975). VP1 synthesis in infected CV-1 cells can be monitored directly by analysis of unfractionated whole cell extracts; the resolution of VP1 from cellular proteins allows its detection as early as 13 hr after infection. The two-dimensional separation of VP1 reveals that it is heterogeneous, consisting of one major protein (molecular weight 47,000 daltons and isoelectric point of approximately pH 6.8) and five minor protein components. The minor forms of VP1 are 10% of the total VP1 and differ from the major form of VP1 both in molecular weight (by approximately 500 daltons) and isoelectric point (ranging from approximately pH 6.7 to pH 6.9). Evidence is presented to show that two of the minor forms are phosphorylated derivatives of VP1, and it is further suggested that all the different forms of VP1 are the result of modifications of the primary product of translation. A temperature-sensitive mutant of the BC complementation group (BC11) of SV40 results in the synthesis of VP1 with an altered electrophoretic mobility; both the major form of VP1 and the minor forms are shifted in their isoelectric points. In addition to the specific case of SV40, two aspects of these studies should be generally significant to investigators studying eucaryotic gene expression by two-dimensional gel electrophoresis: first, the genetic origin of a protein can be determined by a temperature-sensitive mutation which causes a charge change in the resultant protein; and second, two or more protein spots on a two-dimensional separation may be the products of a single gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号