首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
2.
3.
4.
5.
6.
Nrf2 (NF-E2-related factor 2) is a master regulator of cellular responses against environmental stresses. Nrf2 induces the expression of detoxification and antioxidant enzymes, and Keap1 (Kelch-like ECH-associated protein 1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, regulates Nrf2 activity. Keap1 also acts as a sensor for oxidative and electrophilic stresses. Keap1 retains multiple sensor cysteine residues that detect various stress stimuli. Increasing attention has been paid to the roles that Nrf2 plays in the protection of our bodies against drug toxicity and stress-induced diseases. On the other hand, Nrf2 is found to promote both oncogenesis and cancer cell resistance against chemotherapeutic drugs. Thus, although Nrf2 acts to protect our body from deleterious stresses, cancer cells hijack the Nrf2 activity to support their malignant growth. Nrf2 has emerged as a new therapeutic target, and both inducers and inhibitors of Nrf2 are awaited. Studies challenging the molecular basis of the Keap1–Nrf2 system functions are now critically important to improve translational studies of the system. Indeed, recent studies identified cross talk between Nrf2 and other signaling pathways, which provides new insights into the mechanisms by which the Keap1–Nrf2 system serves as a potent regulator of our health and disease.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a master regulator of cellular homeostasis that controls the expression of more than 1% of human genes related to biotransformation reactions, redox homeostasis, energetic metabolism, DNA repair, and proteostasis. Its activity has a tremendous impact on physiology and pathology and therefore it is very tightly regulated, mainly at the level of protein stability. In addition to the very well established regulation by the ubiquitin E3 ligase adapter Keap1, recent advances have identified a novel mechanism based on signaling pathways that regulate glycogen synthase kinse-3 (GSK-3). This kinase phosphorylates specific serine residues in the Neh6 domain of Nrf2 to create a degradation domain that is then recognized by the ubiquitin ligase adapter β-TrCP and tagged for proteasome degradation by a Cullin1/Rbx1 complex. Here we review the mechanistic elements and the signaling pathways that participate in this regulation by GSK-3/β-TrCP. These pathways include those activated by ligands of tyrosine kinase, G protein-coupled, metabotropic, and ionotropic receptors that activate phosphatidyl inositol 3-kinase (PI3K)/ATK and by the canonical WNT signaling pathway, where a fraction of Nrf2 interacts with Axin1/GSK-3. Considering that free Nrf2 protein is localized in the nucleus, we propose a model termed “double flux controller” to explain how Keap1 and β-TrCP coordinate the stability of Nrf2 in several scenarios. The GSK-3/β-TrCP axis provides a novel therapeutic strategy to modulate Nrf2 activity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号