首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review summarizes evidence at the molecular genetic, protein and regulatory levels concerning the existence and function of a putative ABC-type chloroplast envelope-localized sulfate transporter in the model unicellular green alga Chlamydomonas reinhardtii. From the four nuclear genes encoding this sulfate permease holocomplex, two are coding for chloroplast envelope-targeted transmembrane proteins (SulP and SulP2), a chloroplast stroma-targeted ATP-binding protein (Sabc) and a substrate (sulfate)-binding protein (Sbp) that is localized on the cytosolic side of the chloroplast envelope. The sulfate permease holocomplex is postulated to consist of a SulP–SulP2 chloroplast envelope transmembrane heterodimer, flanked by the Sabc and the Sbp proteins on the stroma side and the cytosolic side of the inner envelope, respectively. The mature SulP and SulP2 proteins contain seven transmembrane domains and one or two large hydrophilic loops, which are oriented toward the cytosol. The corresponding prokaryotic-origin genes (SulP and SulP2) probably migrated from the chloroplast to the nuclear genome during the evolution of Chlamydomonas reinhardtii. These genes, or any of its homologues, have not been retained in vascular plants, e.g. Arabidopsis thaliana, although they are encountered in the chloroplast genome of a liverwort (Marchantia polymorpha). The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the Photosystem II D1 reaction center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in Chlamydomonas reinhardtii is discussed along with its impact on the repair of Photosystem II from a frequently occurring photo-oxidative damage and H2-evolution related metabolism in this green alga.  相似文献   

2.
The unicellular green alga Chlamydomonas reinhardtii has been identified as a promising organism for the production of recombinant proteins. While during the last years important improvements have been developed for the production of proteins within the chloroplast, the expression levels of transgenes from the nuclear genome were too low to be of biotechnological importance. In this study, we integrated endogenous intronic sequences into the expression cassette to enhance the expression of transgenes in the nucleus. The insertion of one or more copies of intron sequences from the Chlamydomonas RBCS2 gene resulted in increased expression levels of a Renilla-luciferase gene used as a reporter. Although any of the three RBCS2 introns alone had a positive effect on expression, their integration in their physiological number and order created an over-proportional stimulating effect observed in all transformants. The secretion of the luciferase protein into the medium was achieved by using the export sequence of the Chlamydomonas ARS2 gene in a cell wall deficient strain and Renilla-luciferase could be successfully concentrated with the help of attached C-terminal protein tags. Similarly, a codon adapted gene variant for human erythropoietin (crEpo) was expressed as a protein of commercial relevance. Extracellular erythropoietin produced in Chlamydomonas showed a molecular mass of 33 kDa probably resulting from post-translational modifications. Both, the increased expression levels of transgenes by integration of introns and the isolation of recombinant proteins from the culture medium are important steps towards an extended biotechnological use of this alga. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Three chloroplast genes, psbA, psbB and rbcL, of the microalgae Dunaliella tertiolecta were targeted with the view to using these components in the construction of a chloroplast transformation vector. The three genes and surrounding genomic regions were isolated by screening libraries and using degenerate primers to amplify by PCR conserved coding regions and unknown flanking sequences. The putative Dunaliella psbA, psbB and rbcL proteins show high levels of sequence conservation sharing approximately 87, 92 and 97% similarity to the homologues of Chlamydomonas reinhardtii. Interestingly, four of the five introns of the psbA gene contain long open-reading frames which have sequence similarity to the H-N-H and GIY-YIG site-specific homing endonucleases suggesting that, like other microalgae, the Dunaliella gene contains group I introns. Putative promoter regions of the psbB and rbcL genes were isolated and found to contain the required signals necessary for gene expression.  相似文献   

4.
5.
Chen HC  Melis A 《Planta》2004,220(2):198-210
Recent work [H.-C. Chen et al. (2003) Planta 218:98-106] reported on the genomic, proteomic, phylogenetic and evolutionary aspects of a putative nuclear gene ( SulP) encoding a chloroplast sulfate permease in the model green alga Chlamydomonas reinhardtii. In this article, evidence is provided for the envelope localization of the SulP protein and its function in the uptake and assimilation of sulfate by the chloroplast. Localization of the SulP protein in the chloroplast envelope was concluded upon isolation of C. reinhardtii chloroplasts, followed by fractionation into envelope and thylakoid membranes and Western blotting of these fractions with specific polyclonal antibodies raised against the recombinant SulP protein. The function of the SulP protein was probed in antisense transformants of C. reinhardtii having lower expression levels of the SulP gene. Results showed that cellular sulfate uptake capacity was lowered as a consequence of attenuated SulP gene expression in the cell, directly affecting rates of de novo protein biosynthesis in the chloroplast. The antisense transformants exhibited phenotypes of sulfate-deprived cells, displaying slow rates of light-saturated oxygen evolution, low levels of Rubisco in the chloroplast and low steady-state levels of the photosystem-II D1 reaction-center protein. The role of the chloroplast sulfate transport in the uptake and assimilation of sulfate in C. reinhardtii is discussed along with its impact on the repair of photosystem-II from a frequently occurring photo-oxidative damage and potential use for the elucidation of the H(2)-evolution-related metabolism in this green alga.  相似文献   

6.
Calmodulin (CaM), belonging to the tropinin C (TnC) superfamily, is one of the calcium-binding proteins that are highly conserved in their protein and gene structure. Based on the structure comparison among published vertebrate and invertebrate CaM, it is proposed that the ancestral form of eumetazoan CaM genes should have five exons and four introns (four-intron hypothesis). In this study, we determined the gene structure of CaM in the coral Acropora muricata, an anthozoan cnidarian representing the basal position in animal evolution. A CaM clone was isolated from a cDNA library constructed from the spawned eggs of A. muricata. This clone was composed of 908 nucleotides, including 162 base pairs (bp) of 5′-untranslated region (UTR), 296 bp of 3′-UTR, and an open reading frame 450 bp in length. The deduced amino acid indicated that the Acropora CaM protein is identical to that of the actiniarian, Metridinium senile, and has four putative calcium-binding domains highly similar to those of other vertebrate or invertebrate CaMs. Southern blot analysis revealed that Acropora CaM is a putative single-copy gene in the nuclear genome. Genomic sequencing showed that Acropora CaM was composed of five exons and four introns, with intron II not corresponding to any region in the actiniarian CaM gene, which possesses only four exons and three introns. Our results highlight that the coral CaM gene isolated from A. muricata has four introns at the predicted positions of the early metazoan CaM gene organization, providing the first evidence from the basal eumetazoan phylum to support the four-intron hypothesis.  相似文献   

7.
Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Complete chloroplast (cp) genome sequences of Capsicum species have been reported. We herein report the complete chloroplast genome sequence of Capsicum baccatum var. baccatum, a wild Capsicum species. The total length of the chloroplast genome is 157,145 bp with 37.7 % overall GC content. One pair of inverted repeats, 25,910 bp in length, was separated by a small single-copy region (17,974 bp) and large single-copy region (87,351 bp). This region contains 86 protein-coding genes, 30 tRNA genes, 4 rRNA genes, and 11 genes contain one or two introns. Pair-wise alignments of chloroplast genome were performed for genome-wide comparison. Analysis revealed a total of 134 simple sequence repeat (SSR) motifs and 282 insertions or deletions variants in the C. baccatum var. baccatum cp genome. The types and abundances of repeat units in Capsicum species were relatively conserved, and these loci could be used in future studies to investigate and conserve the genetic diversity of the Capsicum species.  相似文献   

8.
Three types of respiratory deficient mitochondrial strains have been reported in Chlamydomonas reinhardtii: a deficiency due to (i) two base substitutions causing an amino acid change in the apocytochrome b (COB) gene (i.e., strain named dum-15), (ii) one base deletion in the COXI gene (dum-19), or (iii) a large deletion extending from the left terminus of the genome to somewhere in the COB gene (dum-1, -14, and -16). We found that these respiratory deficient strains of C. reinhardtii can be divided into two groups: strains that are constantly transformable and those could not be transformed in our experiments. All transformable mitochondrial strains were limited to the type that has a large deletion in the left arm of the genome. For these mitochondria, transformation was successful not only with purified intact mitochondrial genomes but also with DNA-constructs containing the compensating regions. In comparison, mitochondria of all the non-transformable strains have both of their genome termini intact, leading us to speculate that mitochondria lacking their left genome terminus have unstable genomes and might have a higher potential for recombination. Analysis of mitochondrial gene organization in the resulting respiratory active transformants was performed by DNA sequencing and restriction enzyme digestion. Such analysis showed that homologous recombination occurred at various regions between the mitochondrial genome and the artificial DNA-constructs. Further analysis by Southern hybridization showed that the wild-type genome rapidly replaces the respiratory deficient monomer and dimer mitochondrial genomes, while the E. coli vector region of the artificial DNA-construct likely does not remain in the mitochondria.  相似文献   

9.
Bellaoui M  Gruissem W 《Planta》2004,219(5):819-826
The DCL (defective chloroplasts and leaves) gene of tomato (Lycopersicon esculentum Mill.) is required for chloroplast development, palisade cell morphogenesis, and embryogenesis. Previous work suggested that DCL protein is involved in 4.5S rRNA processing. The Arabidopsis thaliana (L.) Heynh. genome contains five sequences encoding for DCL-related proteins. In this paper, we investigate the function of AtDCL protein, which shows the highest amino acid sequence similarity with tomato DCL. AtDCL mRNA was expressed in all tissues examined and a fusion between AtDCL and green fluorescent protein (GFP) was sufficient to target GFP to plastids in vivo, consistent with the localization of AtDCL to chloroplasts. In an effort to clarify the function of AtDCL, transgenic plants with altered expression of this gene were constructed. Deregulation of AtDCL gene expression caused multiple phenotypes such as chlorosis, sterile flowers and abnormal cotyledon development, suggesting that this gene is required in different organs. The processing of the 4.5S rRNA was significantly altered in these transgenic plants, indicating that AtDCL is involved in plastid rRNA maturation. These results suggest that AtDCL is the Arabidopsis ortholog of tomato DCL, and indicate that plastid function is required for normal plant development.Abbreviations DCL Defective chloroplasts and leaves - GFP Green fluorescent protein  相似文献   

10.
Two albino mutants (ab1 and ab2) have been derived from long-term shoot proliferation of Bambusa edulis. Based on transmission electronic microscopy data, the chloroplasts of these mutants were abnormal. To study the mutation of gene regulation in the aberrant chloroplasts, we designed 19 pairs of chloroplast-encoded gene primers for genomic and RT-PCR. Only putative NAD(P)H-quinone oxidoreductase chain 4L (ndhE; DQ908943) and ribosomal protein S7 (rps7; DQ908931) were conserved in both the mutant and wild-type plants. The deletions in the chloroplast genome of these two mutants were different: nine genes were deleted in the chloroplast genomic aberration in ab1 and 11 genes in ab2. The chloroplast genes, NAD(P)H-quinone oxidoreductase chain 4 (ndhD; DQ908944), chloroplast 50S ribosomal protein L14 (rpl14; DQ908934), and ATP synthase beta chain (atpB; DQ908948) were abnormal in both mutants. The gene expressions of 18 of these 20 genes were correlated with their DNA copy number. The two exceptions were: ATP synthase CF0 A chain (atpI; DQ908946), whose expression in both mutants was not reduced even though the copy number was reduced; ribosomal protein S19 (rps19; DQ908949), whose expression was reduced or it was not expressed at all even though there was no difference in genomic copy number between the wild-type and mutant plants. The genomic PCR results showed that chloroplast genome aberrations do occur in multiple shoot proliferation, and this phenomenon may be involved in the generation of albino mutants.  相似文献   

11.
The trnS/psbC region of chloroplast DNA (cpDNA) was sequenced for 18 Elymus polyploid species, Hordelymus europaeus and their putative diploid ancestors. The objective was to determine the maternal origin and evolutionary relationships of these polyploid taxa. Phylogenetic analysis showed that Elymus and Pseudoroegneria species formed a highly supported monophyletic group (100 % bootstrap values), suggesting that Pseudoroegneria is the maternal genome donor to polyploid Elymus species studied here. The phylogenetic tree based on cpDNA sequence data indicates that E. submuticus contains a St-genome. Taking into consideration of our previously published RPB2 data, we can conclude that hexaploid E. submuticus contains at least one copy of St and Y genomes. Our Neighor-joining analysis of cpDNA data put Psathyrostachys juncea, Hordeum bogdanii and Hordelymus europaeus into one group, suggesting a close relationship among them.  相似文献   

12.
Liu CW  Lin CC  Chen JJ  Tseng MJ 《Plant cell reports》2007,26(10):1733-1744
The objectives of this research were first to isolate plastid gene sequences from cabbage (Brassica oleracea L. var. capitata L.), and to establish the chloroplast transformation technology of Brassica. A universal transformation vector (pASCC201) for Brassica chloroplast was constructed with trnVrrn16S (left) and trnItrnArrn23S (right) of the IRA region as a recombination site for the transformed gene. In transforming plasmid pASCC201, a chimeric aadA gene was cloned between the rrn16S and rrn23S plastid gene borders. Expression of aadA confers resistance to spectinomycin and streptomycin antibiotics. The uidA gene was also inserted into the pASCC201 and transferred into the leaf cells of cabbage via particle gun mediated transformation. Regenerated plantlets were selected by 200 mg/l spectinomycin and streptomycin. After antibiotic selection, the regeneration percentage of the two cabbage cultivars was about 2.7–3.3%. The results of PCR testing and Southern blot analysis confirmed that the uidA and aadA genes were present in the chloroplast genome via homologously recombined. Northern blot hybridizations, immunoblotting and GUS histochemical assays indicated that the uidA gene were stable integrated into the chloroplast genome. Foreign protein was accumulated at 3.2–5.2% of the total soluble protein in transgenic mature leaves. These results suggest that the expression of a variety of foreign genes in the chloroplast genome will be a powerful tool for use in future studies.  相似文献   

13.
Nucleotide sequences of the immunoglobulin constant heavy chain genes of the horse have been described for IGHM, IGHG and IGHE genes, but not for IGHA. Here, we provide the nucleotide sequence of the genomic IGHA gene of the horse (Equus caballus), including its secretion region and the transmembrane exon. The equine IGHA gene shows the typical structure of a mammalian IGHA gene, with only three exons, separated by two introns of similar size. The hinge exon is located at the 5 end of the CH2 exon and encodes a hinge region of 11 amino acids, which contains five proline residues. The coding nucleotide sequence of the secreted form of the equine IGHA gene shares around 72% identity with the human IGHA1 and IGHA2 genes, as well as the bovine, ovine, porcine and canine IGHA genes, without distinct preference for any of these species. The same species also cluster together in a phylogenetic tree of the IGHA coding regions of various mammals, whereas rodent, rabbit, marsupial and monotreme IGHA genes each build a separate cluster.The nucleotide sequences reported in this paper have been assigned the EMBL/GenBank accession numbers AY247966 and AY351982  相似文献   

14.
15.
Reticulate hybridization is a complicated and creative mechanism in plant evolution that can cause interference in phylogenetic studies. Based on observations of intermediate morphology, low pollen fertility, and overlapping distributions of putative parent species, Yang and Wang (Proceedings of the cross-strait symposium on floristic diversity and conservation. National Museum of Natural Science, Taichung, Taiwan, pp 183–197, 1998) first proposed reticulate hybridization of Alpinia in Taiwan. In the present study, molecular tools were used to explore relationships between four parental species and their homoploidy hybrids, and the impact of hybridization on phylogeny reconstruction. Based on DNA markers, maternal heritance of the chloroplast genome, and additivity of nuclear ribosomal internal transcribed spacer, the present results provide strong support for the hybridization hypothesis. Co-existence of parental ribotypes within hybrids revealed that these hybridization events were current, while reciprocal and introgressive hybridization were inferred from chloroplast DNA data. Furthermore, iterative hybridizations involving more than two parental species may occur in notorious hybrid zones. Ecological, phenological, and physiological evidence provides insight into why such frequent hybridization occurs in Taiwanese Alpinia. In the phylogenetic tree of the Zerumbet clade reconstructed in this study, the chloroplast sequences from one hybrid species were not grouped into a subclade, implying instability caused by hybridization. Failure to find morphological apomorphies and biogeographical patterns in this clade was likely partially due to reticulate hybridization. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
The FUD17 strain of Chlamydomonas reinhardtii is a photosynthesis-deficient, acetate-requiring mutant with a defect in the chloroplast atpE gene, which codes for the ε subunit of the chloroplast ATP synthase. In this work, the FUD17 mutant was examined in relation to other known ATP synthase mutants as an initial step toward using this strain to generate altered versions of the atpE gene for site-directed mutagenesis of the ε subunit. The FUD17 strain grows well and is normally pigmented in the dark (heterotrophic conditions), but cannot grow autotrophically in the light, even when media are supplemented with acetate. Under heterotrophic conditions, it shows no accumulation of the ε subunit, and much lower levels of the α and β subunits of the chloroplast ATP synthase. FUD17 shows no light-dependent oxygen evolution and shows a strong, light-dependent alteration in its chlorophyll fluorescence. These results show that FUD17 possesses similar characteristics to other ATP synthase mutants and fails to express an assembled ATP synthase complex on its thylakoid membrane. A preliminary attempt at site-directed mutagenesis is described which produced a slightly truncated form of the ε subunit, which is expressed normally in the cell. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Multiple independent recruitments of the S-pollen component (always an F-box gene) during RNase-based gametophytic self-incompatibility evolution have recently been suggested. Therefore, different mechanisms could be used to achieve the rejection of incompatible pollen in different plant families. This hypothesis is, however, mainly based on the interpretation of phylogenetic analyses, using a small number of divergent nucleotide sequences. In this work we show, based on a large collection of F-box S-like sequences, that the inferred relationship of F-box S-pollen and F-box S-like sequences is dependent on the sequence alignment software and phylogenetic method used. Thus, at present, it is not possible to address the phylogenetic relationship of F-box S-pollen and S-like sequences from different plant families. In Petunia and Malus/Pyrus the putative S-pollen gene(s) show(s) variability patterns different than expected for an S-pollen gene, raising the question of false identification. Here we show that in Petunia, the unexpected features of the putative S-pollen gene are not incompatible with this gene’s being the S-pollen gene. On the other hand, it is very unlikely that the Pyrus SFBB-gamma gene is involved in specificity determination. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
A new cryptic plasmid pBMB175 from Bacillus thuringiensis subsp. tenebrionis YBT-1765 was isolated and characterized. Sequence analysis showed that pBMB175 (14,841 bp and 31% GC content) contained at least eighteen putative open reading frames (ORFs), among which nine ORFs displayed the homology with the hypothetical proteins in rolling-circle replication plasmid pGI3. Deletion analysis revealed that the pBMB175 minireplicon located in a novel 1,151 bp fragment. This fragment contains ORF7 coding sequence, which encodes a protein (Rep175, 149 amino acids [aa]) indispensable for plasmid replication. Rep175 has no significant homology with known function proteins. Furthermore, a putative double-strand origin (dso), having no DNA similarity with characterized dso of other replicon so far, was identified in this minireplicon fragment. These features showed that pBMB175 could be placed into a new plasmid family.  相似文献   

19.
A novel lipase gene, lipJ08, was cloned from Candida rugosa ATCC14830, along with the already reported five lipase genes (lip1–lip5). Nucleotide sequencing indicated that the lipJ08 gene contains a 1650 bp open reading frame (ORF) without introns. The deduced amino acid sequence corresponds to 534 amino acid residues, including a putative signal sequence of 15 amino acid residues. Seventeen of the non-universal serine codons (CTG) of lipJ08 were converted into universal serine codons (TCT) by PCR-based mutagenesis. The native and codon-optimized lipJ08 genes were expressed in Pichia pastoris. The hydrolytic activity of the recombinant LIPJ08 was 4.7 U/ml, whereas the activity of the recombinant wild-type lipase could not be detected.  相似文献   

20.
Calcium serves as a second messenger in various signal transduction pathways in plants. CBL-interacting protein kinases (CIPKs), which have a variety of functions, are involved in calcium signal transduction. Previous, the studies on CIPK family members focused on Arabidopsis and rice. Here, we present a comparative genomic analysis of the CIPK gene family in Arabidopsis and poplar, a model tree species. Twenty-seven potential CIPKs were identified from poplar using genome-wide analysis. Like the CIPK gene family from Arabidopsis, CIPK genes from poplar were also divided into intron-free and intron-harboring groups. In the intron-harboring group, the intron distribution of CIPKs is rather conserved during the genome evolutionary process. Many homologous gene pairs were found in the CIPK gene family, indicating duplication events might contribute to the amplification of this gene family. The phylogenetic comparison of CIPKs in combination with intron distribution analysis revealed that CIPK genes from both Arabidopsis and poplar might have an ancient origin, which formed earlier than the separation of these two eudicot species. Our genomic and bioinformatic analysis will provide an important foundation for further functional dissection of the CBL-CIPK signaling network in poplars. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号