首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Oligomeric proteins may have been selected for in hyperthermophiles because subunit association provides extra stabilization. Phosphoribosylanthranilate isomerase (PRAI) is monomeric and labile in most mesophilic microorganisms, but dimeric and stable in the hyperthermophile Thermotoga maritima (tPRAI). The two subunits of tPRAI are associated back-to-back and are locked together by a hydrophobic loop. The hypothesis that dimerization is important for thermostability has been tested by rationally designing monomeric variants of tPRAI. RESULTS: The comparison of tPRAI and PRAI from Escherichia coli (ePRAI) suggested that levelling the nonplanar dimer interface would weaken the association. The deletion of two residues in the loop loosened the dimer. Subsequent filling of the adjacent pocket and the exchange of polar for apolar residues yielded a weakly associating and a nonassociating monomeric variant. Both variants are as active as the parental dimer but far more thermolabile. The thermostability of the weakly associating monomer increased significantly with increasing protein concentration. The X-ray structure of the nonassociating monomer differed from that of the parental subunit only in the restructured interface. The orientation of the original subunits was maintained in a crystal contact between two monomers. CONCLUSIONS: tPRAI is dimeric for reasons of stability. The clearly separated responsibilities of the betaalpha loops, which are involved in activity, and the alphabeta loops, which are involved in protein stability, has permitted the evolution of dimers without compromising their activity. The preserved interaction in the crystal contacts suggests the most likely model for dimer evolution.  相似文献   

2.
Caspase-3 is a fundamental target for pharmaceutical interventions against a variety of diseases involving disregulated apoptosis. The enzyme is active as a dimer with two symmetry-related active sites, each featuring a Cys-His catalytic dyad and a selectivity loop, which recognizes the characteristic DEVD pattern of the substrate. Here, a molecular dynamics study of the enzyme in complex with two pentapeptide substrates DEVDG is presented, which provides a characterization of the dynamic properties of the active form in aqueous solution. The mobility of the substrate and that of the catalytic residues are rather low indicating a distinct preorganization effect of the Michaelis complex. An essential mode analysis permits us to identify coupled motions between the two monomers. In particular, it is found that the motions of the two active site loops are correlated and tend to steer the substrate toward the reactive center, suggesting that dimerization has a distinct effect on the dynamic properties of the active site regions. The selectivity loop of one monomer turns out to be correlated with the N-terminal region of the p12 subunit of the other monomer, an interaction that is also found to play a fundamental role in the electrostatic stabilization of the quaternary structure. To further characterize the specific influence of dimerization on the enzyme essential motions, a molecular dynamics analysis is also performed on the isolated monomer.  相似文献   

3.
The human centromere protein B (CENP-B), a centromeric heterochromatin component, forms a homodimer that specifically binds to a distinct DNA sequence (the CENP-B box), which appears within every other alpha-satellite repeat. Previously, we determined the structure of the human CENP-B DNA-binding domain, CENP-B-(1-129), complexed with the CENP-B box DNA. In the present study, we determined the crystal structure of its dimerization domain (CENP-B-(540-599)), another functional domain of CENP-B, at 1.65-A resolution. CENP-B-(540-599) contains two alpha-helices, which are folded into an antiparallel configuration. The CENP-B-(540-599) dimer formed a symmetrical, antiparallel, four-helix bundle structure with a large hydrophobic patch in which 23 residues of one monomer form van der Waals contacts with the other monomer. In the CENP-B-(540-599) dimer, the N-terminal ends of CENP-B-(540-599) are oriented on opposite sides of the dimer. This CENP-B dimer configuration may be suitable for capturing two distant CENP-B boxes during centromeric heterochromatin formation.  相似文献   

4.
Based on the (1)H-(15)N NMR spectroscopy data, the three-dimensional structure and internal dynamic properties of ribosomal protein L7 from Escherichia coli were derived. The structure of L7 dimer in solution can be described as a set of three distinct domains, tumbling rather independently and linked via flexible hinge regions. The dimeric N-terminal domain (residues 1-32) consists of two antiparallel alpha-alpha-hairpins forming a symmetrical four-helical bundle, whereas the two identical C-terminal domains (residues 52-120) adopt a compact alpha/beta-fold. There is an indirect evidence of the existence of transitory helical structures at least in the first part (residues 33-43) of the hinge region. Combining structural data for the ribosomal protein L7/L12 from NMR spectroscopy and x-ray crystallography, it was suggested that its hinge region acts as a molecular switch, initiating "ratchet-like" motions of the L7/L12 stalk with respect to the ribosomal surface in response to elongation factor binding and GTP hydrolysis. This hypothesis allows an explanation of events observed during the translation cycle and provides useful insights into the role of protein L7/L12 in the functioning of the ribosome.  相似文献   

5.
Cadherin-mediated cell adhesion is achieved through dimerization of cadherin N-terminal extracellular (EC1) domains presented from apposed cells. The dimer state is formed by exchange of N-terminal beta strands and insertion of conserved tryptophan indole side chains from one monomer into hydrophobic acceptor pockets of the partner molecule. The present work characterizes individual monomer and dimer states and the monomer-dimer equilibrium of the mouse Type II cadherin-8 EC1 domain using NMR spectroscopy. Limited picosecond-to-nanosecond timescale dynamics of the tryptophan indole moieties for both monomer and dimer states are consistent with well-ordered packing of the N-terminal beta strands intramolecularly and intermolecularly, respectively. However, pronounced microsecond-to-millisecond timescale dynamics of the side chains are observed for the monomer but not the dimer state, suggesting that monomers transiently sample configurations in which the indole moieties are exposed. The results suggest possible kinetic mechanisms for EC1 dimerization.  相似文献   

6.
Ferric uptake regulator (Fur) is a global bacterial regulator that uses iron as a cofactor to bind to specific DNA sequences. Escherichia coli Fur is usually isolated as a homodimer with two metal sites per subunit. Metal binding to the iron site induces protein activation; however the exact role of the structural zinc site is still unknown. Structural studies of three different forms of the Escherichia coli Fur protein (nonactivated dimer, monomer, and truncated Fur-(1-82)) were performed. Dimerization of the oxidized monomer was followed by NMR in the presence of a reductant (dithiothreitol) and Zn(II). Reduction of the disulfide bridges causes only local structure variations, whereas zinc addition to reduced Fur induces protein dimerization. This demonstrates for the first time the essential role of zinc in the stabilization of the quaternary structure. The secondary structures of the mono- and dimeric forms are almost conserved in the N-terminal DNA-binding domain, except for the first helix, which is not present in the nonactivated dimer. In contrast, the C-terminal dimerization domain is well structured in the dimer but appears flexible in the monomer. This is also confirmed by heteronuclear Overhauser effect data. The crystal structure at 1.8A resolution of a truncated protein (Fur-(1-82)) is described and found to be identical to the N-terminal domain in the monomeric and in the metal-activated state. Altogether, these data allow us to propose an activation mechanism for E. coli Fur involving the folding/unfolding of the N-terminal helix.  相似文献   

7.
RctB, the initiator of replication of Vibrio cholerae chromosome 2 (chr2), binds to the origin of replication to specific 12-mer sites both as a monomer and a dimer. Binding to 12-mers is essential for initiation. The monomers also bind to a second kind of site, 39-mers, which inhibits initiation. Mutations in rctB that reduce dimer binding increase monomer binding to 12-mers but decrease monomer binding to 39-mers. The mechanism of this paradoxical binding behavior has been unclear. Using deletion and alanine substitution mutants of RctB, we have now localized to a 71 amino acid region residues important for binding to the two kinds of DNA sites and for RctB dimerization. We find that the dimerization domain overlaps with both the DNA binding domains, explaining how changes in the dimerization domain can alter both kinds of DNA binding. Moreover, dimerization-defective mutants could be initiation-defective without apparent DNA binding defect. These results suggest that dimerization might be important for initiation beyond its role in controlling DNA binding. The finding that determinants of crucial initiator functions reside in a small region makes the region an attractive target for anti-V. cholerae drugs.  相似文献   

8.
Bovine seminal ribonuclease (BS-RNase) is the only known dimeric enzyme characterized by an equilibrium between two different 3D structures: MxM, with exchange (or swapping) of the N-terminal 1-20 residues, and M=M, without exchange. As a consequence, the hinge region 16-22 has a different tertiary structure in the two forms. In the native protein, the equilibrium ratio between MxM and M=M is about 7 : 3. Kinetic analysis of the swapping process for a recombinant sample shows that it folds mainly in the M=M form, then undergoes interconversion into the MxM form, reaching the same 7 : 3 equilibrium ratio. To investigate the role of the regions that are most affected structurally by the swapping, we expressed variant proteins by replacing two crucial residues with the corresponding ones from RNase A: Pro19, within the hinge peptide, and Leu28, located at the interface between subunits. We compared the structural properties of the monomeric forms of P19A-BS-RNase, L28Q-BS-RNase and P19A/L28Q-BS-RNase variants with those of the parent protein, and investigated the exchange kinetics of the corresponding dimers. The P19A mutation slightly increases the thermal stability of the monomer, but it does not alter the swapping tendency of the dimer. In contrast, the L28Q mutation significantly affects both the dimerization and swapping processes but not the thermal stability of the monomer. Overall, these results suggest that the structural determinants that control the exchange of N-terminal arms in BS-RNase may not be located within the hinge peptide, and point to a crucial role of the interface residues.  相似文献   

9.
The homodimeric 45.6 kDa (total mass) Mip protein, a virulence factor from Legionella pneumophila, was investigated with solution NMR spectroscopy and molecular dynamics (MD) simulations. Two Mip monomers are dimerized via an N-terminal helix bundle that is connected via a long alpha-helix to a C-terminal FKBP domain in each subunit. More than 85% of the amino acids were identified in triple-resonance NMR spectra. (15)N relaxation analysis showed a bimodal distribution of R(1)/R(2) values, with the lower ratio in the N-terminal domain. Relaxation dispersion measurements confirmed that these reduced ratios did not originate from conformational exchange. Thus, two different correlation times (tau(c)) can be deduced, reflecting partly uncoupled motions of both domains. Relaxation data of a Mip(77)(-)(213) monomer mutant were similar to those observed in the dimer, corroborating that the FKBP domain, including part of the connecting helix, behaves as one dynamic entity. MD simulations (18 ns) of the Mip dimer also yielded two different correlation times for the two domains and thus confirm the independence of the domain motions. Principal component analysis of the dihedral space covariance matrix calculated from the MD trajectory suggests a flexible region in the long connecting helix that acts as a hinge between the two domains. Such motion provides a possible explanation of how Mip can bind to complex molecular components of the extracellular matrix and mediate alveolar damage and bacterial spread in the lung.  相似文献   

10.
The eukaryotic SMC1/SMC3 heterodimer is essential for sister chromatid cohesion and acts in DNA repair and recombination. Dimerization depends on the central hinge domain present in all SMC proteins, which is flanked at each side by extended coiled-coil regions that terminate in specific globular domains. Here we report on DNA interactions of the eukaryotic, heterodimeric SMC1/SMC3 hinge regions, using the two known isoforms, SMC1alpha/SMC3 and the meiotic SMC1beta/SMC3. Both dimers bind DNA with a preference for double-stranded DNA and DNA rich in potential secondary structures. Both dimers form large protein-DNA networks and promote reannealing of complementary DNA strands. DNA binding but not dimerization depends on approximately 20 amino acids of transitional sequence into the coiled-coil region. Replacement of three highly conserved glycine residues, thought to be required for dimerization, in one of the two hinge domains still allows formation of a stable dimer, but if two hinge domains are mutated dimerization fails. Single-mutant dimers bind DNA, but hinge monomers do not. Together, we show that eukaryotic hinge dimerization does not require conserved glycines in both hinge domains, that only the transition into the coiled-coil region rather than the entire coiled-coil region is necessary for DNA binding, and that dimerization is required but not sufficient for DNA binding of the eukaryotic hinge heterodimer.  相似文献   

11.
12.
SecA is the preprotein translocase ATPase subunit and a superfamily 2 (SF2) RNA helicase. Here we present the 2 A crystal structures of the Escherichia coli SecA homodimer in the apo form and in complex with ATP, ADP and adenosine 5'-[beta,gamma-imido]triphosphate (AMP-PNP). Each monomer contains the SF2 ATPase core (DEAD motor) built of two domains (nucleotide binding domain, NBD and intramolecular regulator of ATPase 2, IRA2), the preprotein binding domain (PBD), which is inserted in NBD and a carboxy-terminal domain (C-domain) linked to IRA2. The structures of the nucleotide complexes of SecA identify an interfacial nucleotide-binding cleft located between the two DEAD motor domains and residues critical for ATP catalysis. The dimer comprises two virtually identical protomers associating in an antiparallel fashion. Dimerization is mediated solely through extensive contacts of the DEAD motor domains leaving the C-domain facing outwards from the dimerization core. This dimerization mode explains the effect of functionally important mutations and is completely different from the dimerization models proposed for other SecA structures. The repercussion of these findings on translocase assembly and catalysis is discussed.  相似文献   

13.
1. Polyclonal antibodies (pAb 1-73 and pAb 26-120) have been raised against both an N-terminal fragment of Escherichia coli ribosomal protein L7/L12 (amino acids 1-73), and a fragment lacking part of the N-terminal domain (amino acids 26-120). 2. Only pAb 26-120 inhibited release-factor-dependent in vitro termination functions on the ribosome. This antibody binds over the length of the stalk of the large subunit of the ribosome as determined by immune electron microscopy, thereby not distinguishing between the C-terminal domains of the two L7/L12 dimers, those in the stalk or those in the body of the subunit. 3. A monoclonal antibody against an epitope of the C-terminal two thirds of the protein (mAb 74-120), which binds both to the distal tip of the stalk as well as to a region at its base, reflecting the positions of the two dimers is strongly inhibitory of release factor function. 4. A monoclonal antibody against an epitope of the N-terminal fragment of L7/L12 (mAb 1-73), previously shown to remove the dimer of L7/L12 in the 50S subunit stalk but still bind to the body of the particle, partially inhibited release-factor-mediated events. 5. The mAb 74-120 inhibited in vitro termination with a similar profile when the stalk dimer of L7/L12 was removed with mAb 1-73, indicating that the body L7/L12 dimer, and in particular its C-terminal domains, are important for release factor/ribosome interaction. 6. The two release factors have subtle differences in their binding domains with respect to L7/L12.  相似文献   

14.
Wang Y  Ha Y 《Molecular cell》2004,15(3):343-353
Amyloid beta-peptide, which forms neuronal and vascular amyloid deposits in Alzheimer's disease, is derived from an integral membrane protein precursor. The biological function of the precursor is currently unclear. Here we describe the X-ray structure of E2, the largest of the three conserved domains of the precursor. The structure of E2 consists of two coiled-coil substructures connected through a continuous helix and bears an unexpected resemblance to the spectrin family of protein structures. E2 can reversibly dimerize in the solution, and the dimerization occurs along the longest dimension of the molecule in an antiparallel orientation, which enables the N-terminal substructure of one monomer to pack against the C-terminal substructure of a second monomer. Heparan sulfate proteoglycans, the putative ligand for the precursor present in extracellular matrix, bind to E2 at a conserved and positively charged site near the dimer interface.  相似文献   

15.
Phage T4 endonuclease VII (Endo VII), the first enzyme shown to resolve Holliday junctions, recognizes a broad spectrum of DNA substrates ranging from branched DNAs to single base mismatches. We have determined the crystal structures of the Ca2+-bound wild-type and the inactive N62D mutant enzymes at 2.4 and 2.1 A, respectively. The Endo VII monomers form an elongated, highly intertwined molecular dimer exhibiting extreme domain swapping. The major dimerization elements are two pairs of antiparallel helices forming a novel 'four-helix cross' motif. The unique monomer fold, almost completely lacking beta-sheet structure and containing a zinc ion tetrahedrally coordinated to four cysteines, does not resemble any of the known junction-resolving enzymes, including the Escherichia coli RuvC and lambda integrase-type recombinases. The S-shaped dimer has two 'binding bays' separated by approximately 25 A which are lined by positively charged residues and contain near their base residues known to be essential for activity. These include Asp40 and Asn62, which function as ligands for the bound calcium ions. A pronounced bipolar charge distribution suggests that branched DNA substrates bind to the positively charged face with the scissile phosphates located near the divalent cations. A model for the complex with a four-way DNA junction is presented.  相似文献   

16.
Hirano M  Hirano T 《The EMBO journal》2002,21(21):5733-5744
Structural maintenance of chromosomes (SMC) proteins play central roles in regulating higher order chromosome dynamics from bacteria to humans. As judged by electron microscopy, the SMC homodimer from Bacillus subtilis (BsSMC) is composed of two antiparallel, coiled-coil arms with a flexible hinge. Site-directed cross-linking experiments show here that dimerization of BsSMC is mediated by a hinge-hinge interaction between self-folded monomers. This architecture is conserved in the eukaryotic SMC2-SMC4 heterodimer. Analysis of different deletion mutants of BsSMC unexpectedly reveals that the major DNA-binding activity does not reside in the catalytic ATPase domains located at the ends of a dimer. Instead, point mutations in the hinge domain that disturb dimerization of BsSMC drastically reduce its ability to interact with DNA. Proper hinge function is essential for BsSMC to recognize distinct DNA topology, and mutant proteins with altered hinge angles cross-link double-stranded DNA in a nucleotide-dependent manner. We propose that the hinge domain of SMC proteins is not a simple dimerization site, but rather it acts as an essential determinant of dynamic SMC-DNA interactions.  相似文献   

17.
Dimerization inhibitors of HIV-1 protease   总被引:2,自引:0,他引:2  
By targeting the highly conserved antiparallel beta-sheet formed by the interdigitation of the N- and C-terminal strands of each monomer, dimerization inhibitors of HIV-1 protease may be useful to overcome the drug resistance observed with current active-site directed antiproteases. Sequestration of the monomer by the inhibitor (or disruption of the dimer interface) prevents the correct assembly of the inactive monomers to active enzyme. Strategies for the design of drugs targeting the dimer interface are described. Various dimerization inhibitors are reported including N- and C-terminal mimetics, lipopeptides and cross-linked interface peptides.  相似文献   

18.
In mitochondria, the hydrolytic activity of ATP synthase is prevented by an inhibitor protein, IF1. The active bovine protein (84 amino acids) is an alpha-helical dimer with monomers associated via an antiparallel alpha-helical coiled coil composed of residues 49-81. The N-terminal inhibitory sequences in the active dimer bind to two F1-ATPases in the presence of ATP. In the crystal structure of the F1-IF1 complex at 2.8 A resolution, residues 1-37 of IF1 bind in the alpha(DP)-beta(DP) interface of F1-ATPase, and also contact the central gamma subunit. The inhibitor opens the catalytic interface between the alpha(DP) and beta(DP) subunits relative to previous structures. The presence of ATP in the catalytic site of the beta(DP) subunit implies that the inhibited state represents a pre-hydrolysis step on the catalytic pathway of the enzyme.  相似文献   

19.
Four molecules of ribosomal protein L7/L12 are found as two dimers on the Escherichia coli 50 S ribosomal subunit. Immune electron microscopy using monoclonal antibodies directed against two epitopes of protein L7/L12 has allowed placement of elements of each dimer. One monoclonal antibody, directed against a determinant in the COOH-terminal domain, allows localization of two identical determinants at or near the end of the subunit stalk. The same antibody was used to place two additional determinants at the periphery of stalkless subunits, in an area from which a stalk might be expected to project. A second antibody, directed against an epitope in the amino-terminal portion of L7/L12, caused loss of stalks from the 50 S subunits. The micrographs showed symmetrical oligometric complexes of the dissociated dimeric protein with bivalent antibody. Antibodies were also seen to bind to the body of stalkless subunits, in a region near the COOH-terminal sites. The results are explained by a model in which one dimer of protein L7/L12 exists in a folded conformation on the subunit body and the second dimer occurs in an extended conformation in the subunit stalk.  相似文献   

20.
The L7/12 stalk of the large subunit of bacterial ribosomes encompasses protein L10 and multiple copies of L7/12. We present crystal structures of Thermotoga maritima L10 in complex with three L7/12 N-terminal-domain dimers, refine the structure of an archaeal L10E N-terminal domain on the 50S subunit, and identify these elements in cryo-electron-microscopic reconstructions of Escherichia coli ribosomes. The mobile C-terminal helix alpha8 of L10 carries three L7/12 dimers in T. maritima and two in E. coli, in concordance with the different length of helix alpha8 of L10 in these organisms. The stalk is organized into three elements (stalk base, L10 helix alpha8-L7/12 N-terminal-domain complex, and L7/12 C-terminal domains) linked by flexible connections. Highly mobile L7/12 C-terminal domains promote recruitment of translation factors to the ribosome and stimulate GTP hydrolysis by the ribosome bound factors through stabilization of their active GTPase conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号