首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
RNA helicases: modulators of RNA structure   总被引:13,自引:0,他引:13  
RNA molecules play an essential role in many cellular processes, often as components of ribonucleoprotein complexes. Like proteins, RNA molecules adopt sequence-specific secondary and tertiary structures that are essential for function; alteration of these structures therefore provides a means of regulating RNA function. The discovery of DEAD box proteins, a large family of proteins that share several highly conserved motifs and have known or putative ATP-dependent RNA helicase activity, has provoked growing interest in the concept that regulation of RNA function may occur through local unwinding of complex RNA structures.  相似文献   

3.
RnaViz, a program for the visualisation of RNA secondary structure.   总被引:13,自引:3,他引:10       下载免费PDF全文
RnaViz is a user-friendly, portable, windows-type program for producing publication-quality secondary structure drawings of RNA molecules. Drawings can be created starting from DCSE alignment files if they incorporate structure information or from mfold ct files. The layout of a structure can be changed easily. Display of special structural elements such as pseudo-knots or unformatted areas is possible. Sequences can be automatically numbered, and several other types of labels can be used to annotate particular bases or areas. Although the program does not try to produce an initially non-overlapping drawing, the layout of a properly positioned structure drawing can be applied to a newly created drawing using skeleton files. In this way a range of similar structures can be drawn with a minimum of effort. Skeletons for several types of RNA molecule are included with the program.  相似文献   

4.
A model for the secondary structure of the self-cleaving RNA from hepatitis delta virus was tested. Specific base changes were introduced in each of four regions with the potential for base-pairing (stems I-IV), and for each variant sequence, a rate constant for cleavage was determined. In each stem, mutations that would interfere with Watson-Crick base-pairing also reduced the first-order rate constants by 10-10(4)-fold relative to the unmodified version. Within stems I and II and a shortened form of stem IV, compensatory changes resulted in rates of cleavage equal to or greater than the unaltered ribozyme sequence. Stem III compensatory mutants cleaved faster than the uncompensated mutants although they were not as active as the natural sequence, suggesting additional sequence-dependent requirements within this region. Structure probing of RNA containing the stem II mutations provided an independent confirmation of stem II in the ribozyme. The predictive value of the model was tested by designing two trans-acting ribozymes which were circularly permuted composites of genomic, antigenomic, and unique sequences. The core of these two catalytic RNAs was the same, but they otherwise differed in that, in one of them, a constraining tetraloop sequence was added to stem II. Both ribozymes catalyzed the trans cleavage of a substrate oligoribonucleotide, thus providing additional evidence for stem II and the proposed structure in general.  相似文献   

5.
Distinct structural models for the hammerhead ribozyme derived from single-crystal X-ray diffraction and fluorescence resonance energy transfer (FRET) measurements have been compared. Both models predict the same overall geometry, a wishbone shape with helices II and III nearly colinear and helix I positioned close to helix II. However, the relative orientations of helices I and II are different. To establish whether one of the models represents a kinetically active structure, a new crosslinking procedure was developed in which helices I and II of hammerhead ribozymes were disulfide-crosslinked via the 2' positions of specific sugar residues. Crosslinking residues on helices I and II that are close according to the X-ray structure did not appreciably reduce the catalytic efficiency. In contrast, crosslinking residues closely situated according to the FRET model dramatically reduced the cleavage rate by at least three orders of magnitude. These correlations between catalytic efficiencies and spatial proximities are consistent with the X-ray structure.  相似文献   

6.
7.
8.
9.
The range of functions ascribed to RNA molecules has grown considerably during recent years. Consequently, the analysis and comparison of RNA sequences have become recurrent tasks in molecular biology. Because the biological function of an RNA is expressed more by its folded architecture than by its sequence, original computational tools adapted to the multifaceted RNA functions have to be developed. Such tools, recently published, enable a user to solve classical problems related to RNA research: constructing 'structural' multiple alignments, inferring complete structures and structural motifs from RNA alignments, or searching structural homology in genomic databases.  相似文献   

10.
Among all of the biological macromolecules, the functional versatility of RNAs is unique including encoding or transferring genetic information and performing catalysis. These biological functions are highly dependent upon RNA folding and structure. Since the discovery of catalytic RNAs in the early 1980s, a recent breakthrough came from the identification of a wealth of micro RNAs, small interfering RNAs and regulatory RNAs, all involved in modulation of gene expression. The structure of these novel RNAs, either free or in complex with specific ligands, can be analyzed using various experimental strategies, including X-ray crystallography, cryo-electron microscopy, nuclear magnetic resonance spectroscopy, structure-specific probes, with some that can be used in living cells, RNA engineering, thermal denaturation and mass spectrometry. Among these, X-ray crystallography has recently enabled determination of the structures of several large and complex RNAs, as well as of ribonucleoprotein complexes. The database of RNA structure has grown tremendously since the recent crystal structure analyses of the prokaryotic ribosome and its subunits. These methods are now widely applied to a variety of biologically relevant RNAs.  相似文献   

11.
A computer program is presented which determines the secondary structure of linear RNA molecules by simulating a hypothetical process of folding. This process implies the concept of 'nucleation centres', regions in RNA which locally trigger the folding. During the simulation, the RNA is allowed to fold into pseudoknotted structures, unlike all other programs predicting RNA secondary structure. The simulation uses published, experimentally determined free energy values for nearest neighbour base pair stackings and loop regions, except for new extrapolated values for loops larger than seven nucleotides. The free energy value for a loop arising from pseudoknot formation is set to a single, estimated value of 4.2 kcal/mole. Especially in the case of long RNA sequences, our program appears superior to other secondary structure predicting programs described so far, as tests on tRNAs, the LSU intron of Tetrahymena thermophila and a number of plant viral RNAs show. In addition, pseudoknotted structures are often predicted successfully. The program is written in mainframe APL and is adapted to run on IBM compatible PCs, Atari ST and Macintosh personal computers. On an 8 MHz 8088 standard PC without coprocessor, using STSC APL, it folds a sequence of 700 nucleotides in one and a half hour.  相似文献   

12.
The secondary structure of highly purified ovalbumin mRNA was studied by automated thermal denaturation techniques and the data were subjected to computer processing. Comparative studies with 20 natural and synthetic model nucleic acids suggested that the secondary structure of ovalbumin mRNA possesses the following features: the extent of base pairing of ovalbumin mRNA is similar to that found in tRNAs or ribosomal RNAs; the secondary structure of ovalbumin mRNA is more thermolabile than any of the model compounds tested, including the copolymer poly(A-U); ovalbumin mRNA does not have extensive G-C rich stems as found in tRNAs or ribosomal RNAs; the base composition of the double-stranded regions reveals 54% G-C residues which was significantly higher than that noted in the whole molecule (approximately 41.5% G-C). The presence of 46% A-U pairs in short stems of about five base pairs would have a very large destabilizing effect on the secondary structure of ovalbumin mRNA. However, at 0.175 M monovalent cations and 36 degrees C most of the secondary structure of ovalbumin mRNA is preserved. These data suggest that the double-stranded regions in ovalbumin mRNA are of sufficient length to provide the necessary stability for maintaining the open loop regions in an appropriate conformation which may be required for the biological function of ovalbumin mRNA. Furthermore, the lability of the double-stranded regions in ovalbumin mRNA may also be important for the biological function of this mRNA.  相似文献   

13.
Liu L  Dong H  Chen H  Zhang J  Ling H  Li Z  Shi PY  Li H 《生物学前沿》2010,5(4):286-303
Many flaviviruses are significant human pathogens. The plus-strand RNA genome of a flavivirus contains a 5′ terminal cap 1 structure (m7GpppAmG). The flavivirus encodes one methyltransferase (MTase), located at the N-terminal portion of the NS5 RNA-dependent RNA polymerase (RdRp). Here we review recent advances in our understanding of flaviviral capping machinery and the implications for drug development. The NS5 MTase catalyzes both guanine N7 and ribose 2′-OH methylations during viral cap formation. Representative flavivirus MTases, from dengue, yellow fever, and West Nile virus (WNV), sequentially generate GpppA → m7GpppA → m7GpppAm. Despite the existence of two distinct methylation activities, the crystal structures of flavivirus MTases showed a single binding site for S-adenosyl-L-methionine (SAM), the methyl donor. This finding indicates that the substrate GpppA-RNA must be repositioned to accept the N7 and 2′-O methyl groups from SAM during the sequential reactions. Further studies demonstrated that distinct RNA elements are required for the methylations of guanine N7 on the cap and of ribose 2′-OH on the first transcribed nucleotide. Mutant enzymes with different methylation defects can trans complement one another in vitro, demonstrating that separate molecules of the enzyme can independently catalyze the two cap methylations in vitro. In the context of the infectious virus, defects in both methylations, or a defect in the N7 methylation alone, are lethal to WNV. However, viruses defective solely in 2′-O methylation are attenuated and can protect mice from later wild-type WNV challenge. The results demonstrate that the N7 methylation activity is essential for the WNV life cycle and, thus, methyltransferase represents a novel and promising target for flavivirus therapy.  相似文献   

14.
RNA consisting 43 nucleotides bearing cap structure was synthesized (Figure). In the first place, 9 mer of a leader sequence with the cap structure (F-1) was synthesized by the phosphotriester method and followed by the capping reaction. Next, 32 mer of a cistron was divided into two fragments and each was synthesized by the phosphoramidite method. The 3'-end nucleotide of the RNA, a modified guanosine 5'-phosphate, was introduced to F-3 by use of P1-2',3'-O-methoxymethylene guanosine-5'-yl P2-adenosine-5'-yl diphosphate (A5' ppGmM) with T4 RNA ligase. The chemically synthesized RNA fragments were ligated with T4 RNA ligase to afford the desired RNA.  相似文献   

15.
Human hepatitis delta virus (HDV) RNA has been shown to contain a self-catalyzed cleavage activity. The sequence requirement for its catalytic activity appears to be different from that of other known ribozymes. In this paper, we define the minimum contiguous sequence and secondary structure of the HDV genomic RNA required for the catalytic activity. By using nested-set deletion mutants, we have determined that the essential sequence for the catalytic activity is contained within no more than 85 nucleotides of HDV RNA. These results are in close agreement with the previous determinations and confirmed the relative insignificance of the sequence at the 5' side of the cleavage site. The smallest catalytic RNA, representing HDV genomic RNA nucleotide positions 683 to 770, was used as the basis for studying the secondary structure requirements for catalytic activity. Analysis of the RNA structure, using RNase V1, nuclease S1 and diethylpyrocarbonate treatments showed that this RNA contains at least two stem-and-loop structures. Other larger HDV RNA subfragments containing the catalytic activity also have a very similar secondary structure. By performing site-specific mutagenesis studies, it was shown that one of the stem-and-loop structures could be deleted to half of its original size without affecting the catalytic activity. In addition, the other stem-and-loop contained a six base-pair helix, and the structure, rather than the sequence, of this helix was required for the catalytic activity. However, the structure of a portion of the stem-and-loop remains uncertain. We also report that this RNA can be divided into two separate molecules, which alone did not have cleavage activity but, when mixed, one of the RNAs could be cleaved in trans. This study thus reveals some features of the secondary structure of the HDV genomic RNA involved in self-catalyzed cleavage. A model of this RNA structure is presented.  相似文献   

16.
A Nyk?nen  B Haley  P D Zamore 《Cell》2001,107(3):309-321
We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive approximately 360 kDa protein/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active complex, and ATP-independent recognition and cleavage of the RNA target. Furthermore, ATP is used to maintain 5' phosphates on siRNAs. A 5' phosphate on the target-complementary strand of the siRNA duplex is required for siRNA function, suggesting that cells check the authenticity of siRNAs and license only bona fide siRNAs to direct target RNA destruction.  相似文献   

17.
Bacteriophage phi 6 has a genome of three segments of double-stranded RNA, designated L, M, and S. A 1.2-kbp kanamycin resistance gene was inserted into segment M but was shown to be genetically unstable because of a high recombination rate between segment M and the 3' ends of segments S and L. The high rate of recombination is due to complementary homopolymer tracts bounding the kan gene. Removal of one arm of this potential hairpin stabilizes the insertion. The insertion of a 241- or 427-bp lacZ' gene into segment M leads to a stable Lac+ phage. The insertion of the same genes bounded by complementary homopolymer arms leads to recombinational instability. A stable derivative of this phage was shown to have lost one of the homopolymer arms. Several other conditions foster recombination. The truncation of a genomic segment at the 3' end prevents replication, but such a damaged molecule can be rescued by recombination. Similarly, insertion of the entire 3-kb lacZ gene prevents normal formation of virus, but the viral genes can be rescued by recombination. It appears that conditions leading to the retardation or absence of replication of a particular genomic segment facilitate recombinational rescue.  相似文献   

18.
Reconstitution, activities, and structure of the eukaryotic RNA exosome   总被引:4,自引:0,他引:4  
Liu Q  Greimann JC  Lima CD 《Cell》2006,127(6):1223-1237
The RNA exosome is a multisubunit 3' to 5' exoribonuclease complex that participates in degradation and processing of cellular RNA. To determine the activities and structure of the eukaryotic exosome, we report the reconstitution of 9-subunit exosomes from yeast and human and reconstitution of 10- and 11-subunit exosomes from yeast. Comparative biochemical analysis between purified subunits and reconstituted exosomes using AU-rich, polyadenylated (poly[A]), generic, and structured RNA substrates reveals processive phosphorolytic activities for human Rrp41/Rrp45 and the 9-subunit human exosome, processive hydrolytic activities for yeast Rrp44 and the yeast 10-subunit exosome, distributive hydrolytic activities for Rrp6, and processive and distributive hydrolytic activities for the yeast 11-subunit exosome. To elucidate the architecture of a eukaryotic exosome, its conserved surfaces, and the structural basis for RNA decay, we report the X-ray structure determination for the 286 kDa nine-subunit human exosome at 3.35 A.  相似文献   

19.
20.
Dispersed 5S RNA genes in N. crassa: structure, expression and evolution   总被引:29,自引:0,他引:29  
The 5S RNA genes (5S genes) in N. crassa are not tandemly arranged or tightly clustered as in other eucaryotes that have been examined. 55 RNA or cloned 5S DNA hybridizes to at least 30 different restriction fragments of Neurospora DNA. Of 34 5S DNA clones examined, each contains a single 5S gene. Saturation hybridization analyses indicate that there are about 100 copies of 5S genes in the genome of this organism. We have partially or completely sequenced the 5S region of 15 clones. Both identical and highly divergent 5S coding regions were found. Nine are of one type (alpha). The other six include four different types (beta, beta', gamma and delta) which differ from each other and from the alpha genes to various degrees. Eleven of 15 genes have distinct flanking regions. Analysis of Neurospora 5S RNA showed that it consists of one principal species which matches the alpha-type gene sequence. Additional 5S species corresponding to the less abundant 5S gene types were also detected. The pattern of nucleotide substitutions between the predicted Neurospora 5S RNAs and between these and S. cerevisiae 5S RNA suggests that a particular 5S RNA secondary structure occurs in vivo and is conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号