首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Airway smooth muscle (ASM) hyperplasia is a characteristic feature of the asthmatic airway, but the underlying mechanisms that induce ASM hyperplasia remain unknown. Because transforming growth factor (TGF)-beta is a potent regulator of ASM cell proliferation, we determined its expression and mitogenic signaling pathways in ASM cells. We obtained ASM cells by laser capture microdissection of bronchial biopsies and found that ASM cells from asthmatic patients expressed TGF-beta1 mRNA and protein to a greater extent than nonasthmatic individuals using real-time RT-PCR and immunohistochemistry, respectively. TGF-beta1 stimulated the growth of nonconfluent and confluent ASM cells either in the presence or absence of serum in a time- and concentration-dependent manner. The mitogenic activity of TGF-beta1 on ASM cells was inhibited by selective inhibitors of TGF-beta receptor I kinase (SD-208), phosphatidylinositol 3-kinase (PI3K, LY-294002), ERK (PD-98059), JNK (SP-600125), and NF-kappaB (AS-602868). On the other hand, p38 MAPK inhibitor (SB-203580) augmented TGF-beta1-induced proliferation. To study role of the Smads, we transduced ASM cells with an adenovirus vector-expressing Smad4, Smad7, or dominant-negative Smad3 and found no involvement of these Smads in TGF-beta1-induced proliferation. Dexamethasone caused a dose-dependent inhibition in TGF-beta1-induced proliferation. Our findings suggest that TGF-beta1 may act in an autocrine fashion to induce ASM hyperplasia, mediated by its receptor and several kinases including PI3K, ERK, and JNK, whereas p38 MAPK is a negative regulator. NF-kappaB is also involved in the TGF-beta1 mitogenic signaling, but Smad pathway does not appear important.  相似文献   

2.
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that signals to the nucleus through cell surface transmembrane receptors with serine/threonine kinase activity and cytoplasmic effectors, including Smad proteins. Here we describe two novel modulators of this pathway, lipoprotein-receptor related protein (LRP-1) and decorin. Decorin null (Dcn null) myoblasts showed a diminished TGF-beta response that is restored by decorin re-expression. Importantly, this reactivation occurs without changes in the binding to TGF-beta receptors, Smad protein phosphorylation, or Smad-4 nuclear translocation. In wild type myoblasts, inhibition of decorin binding to LRP-1 and depletion of LRP-1 inhibited TGF-beta response to levels similar to those observed in Dcn null myoblasts. Re-expression of decorin in Dcn null myoblasts cannot restore TGF-beta response if the Smad pathway or phosphatidylinositol 3-kinase activity is inhibited, suggesting that this LRP-1-decorin modulatory pathway requires activation of the Smad pathway by TGF-beta and involves phosphatidylinositol 3-kinase activity. This work unveils a new regulatory mechanism for TGF-beta signaling by decorin and LRP-1.  相似文献   

3.
4.
5.
6.
7.
This study explores the relationship between anti-proliferative signaling by transforming growth factor-beta (TGF-beta) and insulin-like growth factor-binding protein-3 (IGFBP-3) in human breast cancer cells. In MCF-7 cells, the expression of recombinant IGFBP-3 inhibited proliferation and sensitized the cells to further inhibition by TGF-beta1. To investigate the mechanism, we used T47D cells that lack type II TGF-beta receptor (TGF-betaRII) and are insensitive to TGF-beta1. After introducing the TGF-betaRII by transfection, the basal proliferation rate was significantly decreased. Exogenous TGF-beta1 caused no further growth inhibition, but immunoneutralization of endogenous TGF-beta1 restored the proliferation rate almost to the control level. The addition of IGFBP-3 did not inhibit the proliferation of control cells but caused dose-dependent inhibition in TGF-betaRII-expressing cells when exogenous TGF-beta1 was also present. Similarly, receptor-expressing cells showed dose-dependent sensitivity to exogenous TGF-beta1 only in the presence of exogenous IGFBP-3. This indicates that in these cells, anti-proliferative signaling by exogenous IGFBP-3 requires both the TGF-betaRII and exogenous TGF-beta1. To investigate this synergism, the phosphorylation of TGF-beta signaling intermediates, Smad2 and Smad3, was measured. Phosphorylation of each Smad was stimulated by TGF-beta1 and, independently, by IGFBP-3 with the two agents together showing a cumulative effect. These data suggest that IGFBP-3 inhibitory signaling requires an active TGF-beta signaling pathway and implicate Smad2 and Smad3 in IGFBP-3 signal transduction.  相似文献   

8.
9.
Transforming growth factor (TGF)-beta promotes breast cancer metastasis to bone. To determine whether the osteolytic factor parathyroid hormone-related protein (PTHrP) is the primary mediator of the tumor response to TGF-beta, mice were inoculated with MDA-MB-231 breast cancer cells expressing a constitutively active TGF-beta type I receptor. Treatment of the mice with a PTHrP-neutralizing antibody greatly decreased osteolytic bone metastases. There were fewer osteoclasts and significantly decreased tumor area in the antibody-treated mice. TGF-beta can signal through both Smad and mitogen-activated protein (MAP) kinase pathways. Stable transfection of wild-type Smad2, Smad3, or Smad4 increased TGF-beta-stimulated PTHrP secretion, whereas dominant-negative Smad2, Smad3, or Smad4 only partially reduced TGF-beta-stimulated PTHrP secretion. When the cells were treated with a variety of protein kinases inhibitors, only specific inhibitors of the p38 MAP kinase pathway significantly reduced both basal and TGF-beta-stimulated PTHrP production. The combination of Smad dominant-negative blockade and p38 MAP kinase inhibition resulted in complete inhibition of TGF-beta-stimulated PTHrP production. Furthermore, TGF-beta treatment of MDA-MB-231 cells resulted in a rapid phosphorylation of p38 MAP kinase. Thus, the p38 MAP kinase pathway appears to be a major component of Smad-independent signaling by TGF-beta and may provide a new molecular target for anti-osteolytic therapy.  相似文献   

10.
11.
Transforming growth factor-beta1 (TGF-beta1) belongs to a family of multifunctional cytokines that regulate a variety of biological processes, including cell differentiation, proliferation, and apoptosis. The effects of TGF-beta1 are cell context and cell cycle specific and may be signaled through several pathways. We examined the effect of TGF-beta1 on apoptosis of primary human central airway epithelial cells and cell lines. TGF-beta1 protected human airway epithelial cells from apoptosis induced by either activation of the Fas death receptor (CD95) or by corticosteroids. This protective effect was blocked by inhibition of the Smad pathway via overexpression of inhibitory Smad7. The protective effect is associated with an increase in the cyclin-dependent kinase inhibitor p21 and was blocked by the overexpression of key gatekeeper cyclins for the G1/S interface, cyclins D1 and E. Blockade of the Smad pathway by overexpression of the inhibitory Smad7 permitted demonstration of a TGF-beta-mediated proapoptotic pathway. This proapoptotic effect was blocked by inhibition of the p38 MAPK kinase signaling with the inhibitor SB-203580 and was associated with an increase in p38 activity as measured by a kinase assay. Here we demonstrate dual signaling pathways involving TGF-beta1, an antiapoptotic pathway mediated by the Smad pathway involving p21, and an apoptosis-permissive pathway mediated in part by p38 MAPK.  相似文献   

12.
13.
14.
15.
16.
17.
Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine involved in differentiation, growth, and survival of mesenchymal cells while inhibiting growth/survival of most other cell types. The mechanism(s) of pro-survival signaling by TGF-beta1 in mesenchymal cells is unclear. In this report, we demonstrate that TGF-beta1 protects against serum deprivation-induced apoptosis of mesenchymal cells isolated from patients with acute lung injury and of normal human fetal lung fibroblasts (IMR-90). TGF-beta receptor(s)-activated signaling in these cells involves rapid activation of the Smad and p38 MAPK pathways within minutes of TGF-beta1 treatment followed by a more delayed activation of the pro-survival phosphatidylinositol 3-kinase-protein kinase B (PKB)/Akt pathway. Pharmacological inhibition of p38 MAPK with SB203580 or expression of a p38 kinase-deficient mutant protein inhibits TGF-beta1-induced PKB/Akt phosphorylation. Conditioned medium from TGF-beta1-treated cells rapidly induces PKB/Akt activation in an SB203580- and suramin-sensitive manner, suggesting p38 MAPK-dependent production of a secreted growth factor that activates this pro-survival pathway by an autocrine/paracrine mechanism. Inhibition of the phosphatidylinositol 3-kinase-PKB/Akt pathway blocks TGF-beta1-induced resistance to apoptosis. These results demonstrate the activation of a novel TGF-beta1-activated pro-survival/anti-apoptotic signaling pathway in mesenchymal cells/fibroblasts that may explain cell-specific actions of TGF-beta1 and provide mechanistic insights into its pro-fibrotic and tumor-promoting effects.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号