首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The effects of alcohol on core cooling rates (rectal and tympanic), skin temperatures, and metabolic rate were determined for 10 subjects rendered hypothermic by immersion for 45 min in 10 degrees C water. Experiments were duplicated with and without a 20-min period of exercise at the beginning of cold water immersion. Measurements were continued during rewarming in a hot bath. With blood alcohol concentrations averaging 82 mg 100 mL-1, core cooling rates and changes in skin temperatures were insignificantly different from controls, even if the exercise period was imposed. Alcohol reduced shivering metabolic rate by an overall mean of 13%, insufficient to affect cooling rate. Alcohol had no effect on metabolic rate during exercise. During rewarming by hot bath, the amount of 'afterdrop' and rate of increase in core temperature were unaffected by alcohol. It was concluded that alcohol in a moderate dosage does not influence the rate of progress into hypothermia or subsequent, efficient rewarming. This emphasizes that the high incidence of alcohol involvement in water-related fatalities is due to alcohol potentiation of accidents rather than any direct effects on cold water survival, although very high doses of alcohol leading to unconsciousness would increase rate of progress into hypothermia.  相似文献   

2.
To study the mechanism of action of physical antipyresis, core temperature was measured in two groups of rats in which heat loss was increased by cold exposure and by cooling an inferior cava heat exchanger, respectively, both before and after infection with Salmonella enteritidis. Cold exposure did not influence core temperature. On the other hand, cooling the heat exchanger caused a fall in core temperature of approximately 0.7 degree C, to 37 degrees C in normothermia and to 38.5 degrees C 24 h after the infection. These lower core temperatures were then regulated against any further increase in heat loss until the thermoregulatory metabolic capacity of the animals was exhausted and a hypothermia developed. It is concluded that in infectious fever the threshold temperature of shivering increases as much as core temperature. Furthermore it is suggested that physical antipyresis, such as sponging with tepid water, induces a moderate but regulated fall in temperature to about the threshold of shivering and that its efficacy may increase with ambient temperature.  相似文献   

3.
The onset and intensity of shivering of various muscles during cold air exposure are quantified and related to increases in metabolic rate and convective heat loss. Thirteen male subjects resting in a supine position and wearing only shorts were exposed to 10 degrees C air (42% relative humidity and less than 0.4 m/s airflow) for 2 h. Measurements included surface electromyogram recordings at six muscle sites representing the trunk and limb regions of one side of the body, temperatures and heat fluxes at the same contralateral sites, and metabolic rate. The subjects were grouped according to lean (LEAN, n = 6) and average body fat (NORM, n = 7) content. While the rectal temperatures fluctuated slightly but not significantly during exposure, the skin temperature decreased greatly, more at the limb sites than at the trunk sites. Muscles of the trunk region began to shiver sooner and at a higher intensity than those of the limbs. The intensity of shivering and its increase over time of exposure were consistent with the increase in the convective heat transfer coefficient calculated from skin temperatures and heat fluxes. Both the onset of shivering and the magnitude of the increase in metabolic rate due to shivering were higher for the LEAN group than for the NORM group. A regression analysis indicates that, for a given decrease in mean skin temperature, the increase in metabolic rate due to shivering is attenuated by the square root of percent body fat. Thus the LEAN group shivered at higher intensity, resulting in higher increases in metabolic heat production and convective heat loss during cold air exposure than did the NORM group.  相似文献   

4.
The purpose of this study was to evaluate the effect of exercise on the subsequent post-exercise thresholds for vasoconstriction and shivering measured during water immersion. On 2 separate days, seven subjects (six males and one female) were immersed in water (37.5 degrees C) that was subsequently cooled at a constant rate of approximately 6.5 degrees C x h(-1) until the thresholds for vasoconstriction and shivering were clearly established. Water temperature was then increased to 37.5 degrees C. Subjects remained immersed for approximately 20 min, after which they exited the water, were towel-dried and sat in room air (22 degrees C) until both esophageal temperature and mean skin temperature (Tsk) returned to near-baseline values. Subjects then either performed 15 min of cycle ergometry (at 65% maximal oxygen consumption) followed by 30 min of recovery (Exercise), or remained seated with no exercise for 45 min (Control). Subjects were then cooled again. The core temperature thresholds for both vasoconstriction and shivering increased significantly by 0.2 degrees C Post-Exercise (P < 0.05). Because the Tsk at the onset of vasoconstriction and shivering was different during Pre- and Post-Exercise Cooling, we compensated mathematically for changes in skin temperatures using the established linear cutaneous contribution of skin to the control of vasoconstriction and shivering (20%). The calculated core temperature threshold (at a designated skin temperature of 32.0 degrees C) for vasoconstriction increased significantly from 37.1 (0.3) degrees C to 37.5 ( 0.3) degrees C post-exercise (P < 0.05). Likewise, the shivering threshold increased from 36.2 (0.3) degrees C to 36.5 (0.3) degrees C post-exercise (P < 0.05). In contrast to the post-exercise increase in cold thermal response thresholds, sequential measurements demonstrated a time-dependent similarity in the Pre- and Post-Control thresholds for vasoconstriction and shivering. These data indicate that exercise has a prolonged effect on the post-exercise thresholds for both cold thermoregulatory responses.  相似文献   

5.
Experiments in which the whole human body was heated or cooled are compared with others in which one extremity (arm or leg) was simultaneously cooled or heated. With a warm load on the rest of the body resulting in general sweating, a cold load on one extremity did not evoke local shivering; with general body cooling, heating one limb did not stop the shivering. Skin temperatures of the other parts of the body were not influenced by warming or cooling one extremity. Evaporative heat loss was influenced by local, mean skin and core temperature, whereas shivering did not depend on local temperature, and vasomotor control seemed to be controlled predominantly by central temperatures. A cold load on an extremity during whole body heating in most cases induced an oscillatory behaviour of core temperature and of the evaporative heat loss from the body and the extremity. It is assumed that local, mean skin and core temperatures influence the three autonomous effector systems to very different degree.  相似文献   

6.
Responses to a standard cold stress of 10°C for 2 h applied before (Melbourne) and four times during a year in Antarctica were observed in 10 adult male Caucasians, 7 of whom were re-tested after returning from Antarctica. An early form of cold acclimatization developed within a month of arriving in Antarctica in which the cold stress response was characterised by cooler peripheral temperatures than in the pre-Antarctic series. This was replaced by a late form in which the rectal temperature was cooler and peripheral temperatures warmer than in Melbourne. Maintenance of rectal temperature was equal in both forms and superior to that obtained before going to Antarctica. An improved peripheral rewarming rate was associated with the late form. The reduction in plasma cortisol concentration at the end of the cold stresses in Antarctica compared with those in Melbourne was a further indication of the establishment of cold acclimatization. An increased delay in the onset of shivering, a lowered skin temperature at the onset of shivering, and a reduced noradrenaline response was observed in the late Antarctic series. Adrenaline excretion during the cold stress increased in the later series but the rise from the pre-stress level remained fairly constant. This increase did not appear to be related to climate. Similarities with cold adapted rodents and newborn infants suggest that the infantile mechanism of non-shivering thermogenesis mediated by noradrenaline was partially re-established.  相似文献   

7.
In 10 women, external cold and heat exposures were performed both in the middle of luteal phase (L) and in the early follicular phase (F) of the menstrual cycle. Serum progesterone concentrations in L and F averaged 46.0 and 0.9 nmol X l-1, respectively. The experiments took place between 3:00 and 4:30 A.M., when the L-F core temperature difference is maximal. At neutral ambient temperature, esophageal (Tes), tympanic (Tty), rectal (Tre), and mean skin (Tsk) temperatures averaged 0.59 degrees C higher in L than in F. The thresholds for shivering, chest sweating, and cutaneous vasodilation (heat clearance technique) at the thumb and forearm were increased in L by an average of 0.47 degrees C, related to mean body temperature [Tb(es) = 0.87Tes + 0.13 Tsk] and to Tes, Tty, Tre, or Tsk. The above-threshold chest sweat rate and cutaneous heat clearances at the thumb and forearm were also enhanced in L, when related to Tb(es) or time. The metabolic rate, arm blood flow, and heart rate at thermoneutral conditions were increased in L by 5.0%, 1.1 ml X 100 ml-1 X min-1, and 4.6 beats X min-1, respectively. The concomitant increase in threshold temperatures for all autonomic thermoregulatory responses in L supports the concept of a resetting of the set point underlying the basal body temperature elevation in L. The effects of the increased threshold temperatures are counteracted by enhanced heat loss responses.  相似文献   

8.
The oxygen consumption of European finches, the siskin (Carduelis spinus), the brambling (Fringilla montifringilla), the bullfinch (Pyrhulla pyrhulla), the greenfinch (Carduelis chloris) and the hawfinch (Coccothraustes coccothraustes), was recorded continuously while ambient temperature was decreased stepwise from +30 down to-75°C. The oxygen consumption, body temperature (telemetrically), and shivering (integrated pectoral electromyography) of greenfinches were measured simultaneously at ambient temperatures between +30 and-75°C. Maximum heat production, cold limit, lower critical temperature, basal metabolic rate and thermal conductance (of the greenfinch) were determined. The diurnal variation of oxygen consumption of siskins and greenfinches was recorded at thermoneutrality and below the thermoneutral zone in winter- and summer-acclimatized birds. The diurnal variation of body temperature and thermal conductance of greenfinches were also determined. The diurnal variation of heat production was not seasonal or temperature dependent in the siskin and in the greenfinch. Nocturnal reduction of oxygen consumption saved 15–33% energy in the siskin and greenfinch. Body temperature of the greenfinch was lowered by 2.5–3.4°C. The nocturnal reduction of thermal conductance in the greenfinch was 39–48%. The basal metabolic rate was lowest in the largest bird (hawfinch) and highest in the smallest bird (siskin). The values were in the expected range. The heat production capacity of finches in winter was 4.7 times basal metabolic rate in the siskin, 4.2 times in the brambling, 3.5 times in the greenfinch and 2.9 times in the bullfinch and hawfinch. The heat production capacity of the siskin and greenfinch was not significantly lower in summer. The cold limit temperatures (°C) in winter were-61.2 in the siskin,-41.3 in the greenfinch,-37.0 in the bullfinch,-35.7 in the brambling and-28.9 in the hawfinch. The cold limit was 14.3°C higher in summer than in winter in the siskin and 8.7°C in the greenfinch. Thermal insulation of the greenfinch was significantly better in winter than in summer. The shivering of the greenfinch increased linearly when ambient temperature was decreased down to-40°C. Maintenance of shivering was coincident with season. In severe cold integrated pectoral electromyography did not correlate with oxygen consumption as expected. The possible existence of non-shivering thermogenesis in birds is discussed. It is concluded that the acclimatization of European finches is primarily metabolic and only secondly affected by insulation.Abbreviations AAT avian adipose tissue - bm body mass - BMR basal metabolic rate - C t thermal conductance - EMG electromyogram - HP heat production - HP max maximum heat production - MR metabolic rate - NST non-shivering thermogenesis - RMR resting metabolic rate - RQ respiratory quotient - T a ambient temperature - T b body temperature - T c colonic temperature - T 1c lower critical temperature - TNZ thermoneutral zone - T st shivering threshold temperature - V oxygen consumption  相似文献   

9.
An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53-80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40-65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.  相似文献   

10.
To determine whether urban circumpolar residents show seasonal acclimatisation to cold, thermoregulatory responses and thermal perception during cold exposure were examined in young men during January-March (n=7) and August-September (n=8). Subjects were exposed for 24 h to 22 and to 10 degrees C. Rectal (T(rect)) and skin temperatures were measured throughout the exposure. Oxygen consumption (VO(2)), finger skin blood flow (Q(f)), shivering and cold (CDT) and warm detection thresholds (WDT) were assessed four times during the exposure. Ratings of thermal sensations, comfort and tolerance were recorded using subjective judgement scales at 1-h intervals. During winter, subjects had a significantly higher mean skin temperature at both 22 and 10 degrees C compared with summer. However, skin temperatures decreased more at 10 degrees C in winter and remained higher only in the trunk. Finger skin temperature was higher at 22 degrees C, but lower at 10 degrees C in the winter suggesting an enhanced cold-induced vasoconstriction. Similarly, Q(f) decreased more in winter. The cold detection threshold of the hand was shifted to a lower level in the cold, and more substantially in the winter, which was related to lower skin temperatures in winter. Thermal sensations showed only slight seasonal variation. The observed seasonal differences in thermal responses suggest increased preservation of heat especially in the peripheral areas in winter. Blunted vasomotor and skin temperature responses, which are typical for habituation to cold, were not observed in winter. Instead, the responses in winter resemble aggravated reactions of non-cold acclimatised subjects.  相似文献   

11.
In six male subjects the sweating thresholds, heart rate (fc), as well as the metabolic responses to exercise of different intensities [40%, 60% and 80% maximal oxygen uptake (VO2max)], were compared at ambient temperatures (Ta) of 5 degrees C (LT) and 24 degrees C (MT). Each period of exercise was preceded by a rest period at the same temperature. In LT experiments, the subjects rested until shivering occurred and in MT experiments the rest period was made to be of exactly equivalent length. Oxygen uptake (VO2) at the end of each rest period was higher in LT than MT (P less than 0.05). During 20-min exercise at 40% VO2max performed in the cold no sweating was recorded, while at higher exercise intensities sweating occurred at similar rectal temperatures (Tre) but at lower mean skin (Tsk) and mean body temperatures (Tb) in LT than MT experiments (P less than 0.001). The exercise induced VO2 increase was greater only at the end of the light (40% VO2max) exercise in the cold in comparison with MT (P less than 0.001). Both fc and blood lactate concentration [1a]b were lower at the end of LT than MT for moderate (60% VO2max) and heavy (80% VO2max) exercises. It was concluded that the sweating threshold during exercise in the cold environment had shifted towards lower Tb and Tsk. It was also found that subjects exposed to cold possessed a potentially greater ability to exercise at moderate and high intensities than those at 24 degrees C since the increases in Tre, fc and [1a]b were lower at the lower Ta.  相似文献   

12.
The metabolic and body weight changes in two non-pregnant beef cows were studied during prolonged exposure to warm (20 +/- 3 degrees C, relative humidity 50-70%) and cold (-10 +/- 2 or -25 +/- 4 degrees C) temperatures. Other factors including daily food intake were held constant throughout each 8-week exposure. During cold exposures, metabolic rate, blood hematocrit, and plasma concentrations of glucose and free fatty acid were elevated and respiratory frequencies and skin temperatures decreased. Resting metabolic rates measured at 20 degrees C, i.e., without the direct influence of cold, were 83.4-95.3 litres 02 per hour when the cows were cold acclimated, at either -10 or -25 degrees C, and 30-40% greater than when the cows were warm acclimated. The resting metabolic response and the concomitant reduction in intensity of shivering is indicative of metabolic acclimation to cold in these animals of greater than 500 kg body weight. As well as the expected changes in body weight with changes in energy metabolism there were losses in weight (13-24 kg) during the first 3 days of each cold exposure. Weight gains occurred when the cold stress was abruptly removed. These short term weight changes were associated with changes in water intake and apparent shifts in body fluid content.  相似文献   

13.
To examine the core-shell model of temperature distribution and the possible role of subcutaneous temperature in heat regulation, comprehensive temperature measurements were made on six nude resting men exposed for 2-3 h to comfort (27 degrees C), cold (15 degrees C) and heat (45 degrees C). Cold produced strong shivering and heat caused heavy sweating. Temperatures were recorded every 10 min from: esophagus, rectum and auditory canal; back muscle and thigh muscle at 20 mm and 40 mm depths; 6 subcutaneous sites; and 16 skin sites. Average temperatures at these 29 sites were tabulated at the ends of comfort, hot and cold and the onsets of sweating and shivering. Body temperature changes were slow to develop, the skin temperatures being fastest, and successively deeper tissues progressively slower. There was occasional after-drop and after-rise. The data were consistent with the core-shell concept. The temperature gradient from subcutaneous tissue to skin, which differed substantially with comfort, the onset of shivering and the onset of sweating, could serve as a regulatory signal. The data are now in computer format and may be of interest to biothermal modelers.  相似文献   

14.
In response to cold exposure, some mammals, including the nine-banded armadillo (Dasypus novemcinctus), exhibit an increase in core temperature. This response, which can be qualified as a cold-induced fever, could increase cold tolerance by increasing peak metabolic rates because of the Q(10) effects. This hypothesis, however, is not compatible with the observation that peak core temperature can occur up to 100 min before peak metabolic rate in nine-banded armadillos during acute exposure to cold heliox (79% He; 21% O(2)). This temporal separation between the timing of peak metabolic rate and core temperature could be the result of regional heterothermy, of the confounding effects of activity, or of using heliox as a respiratory gas. We tested these potential sources of error by exposing nine-banded armadillos to cold air while simultaneously monitoring behavior, metabolic rates (V dot o2 and V dot co2), and four core temperatures. Cold air exposure resulted in a smaller but significant temporal separation, with peak core temperature occurring on average 10 min before peak metabolic rate. Animals exhibited low activity levels, and the four core temperatures changed according to the same temporal pattern, thus eliminating the possibility that activity or regional heterothermy caused the temporal separation. Using a conceptual model, we propose that the temporal separation resulted from a rate of cooling that was too fast.  相似文献   

15.
Two series of experiments were performed in physically untrained subjects. In series A (heat adaptation, HA), seven male subjects were adapted to dry heat (five consecutive days at 55 degrees C ambient air temperature (Ta) for 1 h X day-1) under resting conditions. Before and after HA, the subjects' shivering responses were determined in a cold test (Ta + 10 to 0 degrees C). In series B, eight male subjects underwent mild exercise training (five consecutive days at a heart rate, HR, of 120 b X min-1) under Ta conditions individually adjusted (Ta + 15 to +5 degrees C) to prevent both sweating and cold sensations. Before and after "sweatless training", the subjects were subjected to a combined cold and heat test. During HA the thresholds for shivering, cutaneous vasodilatation (thumb and forearm) and sweating were shifted significantly (p less than 0.05) towards lower mean body temperatures (Tb). The mean decrease in threshold Tb was 0.36 degrees C. "Sweatless training" resulted in a mean increase in work rate (at HR 120 b X min-1) and oxygen pulse of 13 and 8%, respectively. However, "sweatless training" did not change the threshold Tb for shivering or sweating. Neither HA nor "sweatless training" changed the slopes of the relationships of shivering and sweating to Tb. It is concluded that the previously reported lowering of shivering and sweating threshold Tb in long-distance runners is not due to an increased fitness level, but is essentially identical with HA. The decreased shivering threshold following HA is interpreted as "cross adaptation" produced by the stressors cold and heat.  相似文献   

16.
Restraint hypothermia has often been described, but its cause has never been clarified. We hypothesized that it might be due to a suppression of shivering thermogenesis. Thus, we restrained conscious rats in an ambient temperature of 2 degrees C while measuring rectal (Tre) and tail skin temperatures, metabolic rate (MR), and shivering activity. When rats were cold exposed but not restrained, Tre fell 1.4 +/- 0.2 degrees C (SE) during the 1st h. When these same rats were restrained, Tre fell at a rate of 6.5 +/- 0.2 degrees C/h. MR averaged 15.7 +/- 1.4 W/kg for the unrestrained rats, but it averaged only 9.0 +/- 1.1 W/kg for the restrained rats. The restrained rats showed no signs of shivering. The animals were then subjected to a restraint adaptation regimen and then reexposed to cold. Restraint now produced a fall in Tre of only 2.6 +/- 0.7 degrees C/h. The animals shivered and generated an MR of 15.8 +/- 0.9 W/kg. Naive rats became hypothermic because restraint suppressed shivering activity. However, adapted rats continued to shiver and remained normothermic. We suggest that a stressful or threatening situation, such as restraint for a naive rat, inhibits shivering and leads to hypothermia in a cold environment. This would not occur in adapted rats because restraint is no longer stressful.  相似文献   

17.
We investigated the effect of uniform (UST) and non-uniform (NUST) skin temperature on thermal exchanges during a 3-h water immersion in five male subjects wearing (NUST) or not wearing (UST) a water-perfused garment. UST was achieved by immersing the nude subject in water up to the neck. For each subject, the water temperature was adjusted to the critical temperature ( T(cw), 31.4 +/- 0.9 degrees C) or 3 degrees C below T(cw) ( T(cw) - 3). NUST was achieved by perfusing different segments of the perfused garment with water of different temperatures. The water temperature of the segment was independently adjusted according to the skin temperature distribution in cold air, the mean skin temperature being the same as the UST. At T(cw) and T(cw) - 3, changes in esophageal and mean skin temperatures were identical in UST and NUST conditions, but the skin temperature of the trunk was higher and that of the limb was lower in the NUST condition. Heat production and the overall skin heat flux at T(cw) were identical in the two conditions, but those at T(cw) - 3 were about 25% lower ( P < 0.05) in NUST than in UST conditions. At T(cw) - 3, the overall tissue insulation was 36% higher ( P < 0.05) in NUST than in UST conditions, mainly because of higher limb insulation. Thermogenesis due to shivering was lower by 62% ( P < 0.05) in NUST than in UST. We conclude that the NUST condition increased tissue insulation and suppressed shivering. This suggests that a high skin temperature of the trunk attenuates shivering in cold water and increases the ability to defend body temperature more economically in cold water.  相似文献   

18.
The mammalian response to hypothermia is increased metabolic heat production, usually by way of muscular activity, such as shivering. Seals, however, have been reported to respond to diving with hypothermia, which in other mammals under other circumstances would have elicited vigorous shivering. In the diving situation, shivering could be counterproductive, because it obviously would increase oxygen consumption and therefore reduce diving capacity. We have measured the electromyographic (EMG) activity of three different muscles and the rectal and brain temperature of hooded seals (Cystophora cristata) while they were exposed to low ambient temperatures in a climatic chamber and while they performed a series of experimental dives in cold water. In air, the seals had a normal mammalian shivering response to cold. Muscles were recruited in a sequential manner until body temperature stopped dropping. Shivering was initiated when rectal temperature fell below 35.3 +/- 0.6 degrees C (n = 6). In the hypothermic diving seal, however, the EMG activity in all of the muscles that had been shivering vigorously before submergence was much reduced, or stopped altogether, whereas it increased again upon emergence but was again reduced if diving was repeated. We conclude that shivering is inhibited during diving to allow a decrease in body temperature whereby oxygen consumption is decreased and diving capacity is extended.  相似文献   

19.
The relationship between the physical fitness level (maximal O2 consumption, VO2max) and thermoregulatory reactions was studied in 17 adult males submitted to an acute cold exposure. Standard cold tests were performed in nude subjects, lying for 2 h in a climatic chamber at three ambient air temperatures (10, 5, and 1 degrees C). The level of physical fitness conditioned the intensity of thermoregulatory reactions to cold. For all subjects, there was a direct relationship between physical fitness and 1) metabolic heat production, 2) level of mean skin temperature (Tsk), 3) level of skin conductance, and 4) level of Tsk at the onset of shivering. The predominance of thermogenic or insulative reactions depended on the intensity of the cold stress: insulative reactions were preferential at 10 degrees C, or even at 5 degrees C, whereas colder ambient temperature (1 degree C) triggered metabolic heat production abilities, which were closely related to the subject's physical fitness level. Fit subjects have more efficient thermoregulatory abilities against cold stress than unfit subjects, certainly because of an improved sensitivity of the thermoregulatory system.  相似文献   

20.
(I) Shivering intensity and metabolic rate were determined in Large White pigs aged 2, 24, 48 h and 5 d, at temperatures ranging from thermoneutrality (36°C) to cold (20°C). (2) Shivering is the main heat producing mechanism, the absence of nonshivering thermogenesis being implied by both the absence of delay between the onset of shivering (Stt) and the increase in metabolic rate (Lct) and by the linearity of the relationship between metabolic rate and shivering intensity in the cold. (3) For a comparable thermal demand, shivering intensity decreased with age whereas cold induced heat production remained constant, which suggests that the thermogenic efficiency of shivering is improved during the first 5 days of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号