共查询到20条相似文献,搜索用时 15 毫秒
1.
M E Spearman R A Prough R W Estabrook J R Falck S Manna K C Leibman R C Murphy J Capdevila 《Archives of biochemistry and biophysics》1985,242(1):225-230
The catalysis of glutathione (GSH) conjugation to epoxyeicosatrienoic acids (EETs) by various purified isozymes of glutathione S-transferase was studied. A GSH conjugate of 14,15-EET was isolated by HPLC and TLC; this metabolite contained one molecule of EET and one molecule of GSH. Fast atom bombardment mass spectrometry of the isolated metabolite confirmed the structure as a GSH conjugate of 14,15-EET. Studies designed to determine the isozyme specificity of this reaction demonstrated that two isozymes, 3-3, and 5-5, efficiently catalyzed this conjugation reaction. The Km values for 14,15-EET were approximately 10 microM and the Vmax values ranged from 25 to 60 nmol conjugate formed min-1 mg-1 purified transferase 3-3 and 5-5. The 5,6-, 8,9-, and 11,12-EETs were also substrates for the reaction, albeit at lower rates. These results demonstrate that the EETs can serve as substrates for the cytosolic glutathione S-transferases. 相似文献
2.
Epoxyeicosatrienoic acids (EETs), the eicosanoid biomediators synthesized from arachidonic acid by cytochrome P450 epoxygenases, are inactivated in many tissues by conversion to dihydroxyeicosatrienoic acids (DHETs). However, we find that human skin fibroblasts convert EETs mostly to chain-shortened epoxy-fatty acids and produce only small amounts of DHETs. Comparative studies with [5,6,8,9,11,12,14,15-(3)H]11,12-EET ([(3)H]11,12-EET) and [1-(14)C]11,12-EET demonstrated that chain-shortened metabolites are formed by removal of carbons from the carboxyl end of the EET. These metabolites accumulated primarily in the medium, but small amounts also were incorporated into the cell lipids. The most abundant 11, 12-EET product was 7,8-epoxyhexadecadienoic acid (7,8-epoxy-16:2), and two of the others that were identified are 9, 10-epoxyoctadecadienoic acid (9,10-epoxy-18:2) and 5, 6-epoxytetradecaenoic acid (5,6-epoxy-14:1). The main epoxy-fatty acid produced from 14,15-EET was 10,11-epoxyhexadecadienoic acid (10, 11-epoxy-16:2). [(3)H]8,9-EET was converted to a single metabolite with the chromatographic properties of a 16-carbon epoxy-fatty acid, but we were not able to identify this compound. Large amounts of the chain-shortened 11,12-EET metabolites were produced by long-chain acyl CoA dehydrogenase-deficient fibroblasts but not by Zellweger syndrome and acyl CoA oxidase-deficient fibroblasts. We conclude that the chain-shortened epoxy-fatty acids are produced primarily by peroxisomal beta-oxidation. This may serve as an alternate mechanism for EET inactivation and removal from the tissues. However, it is possible that the epoxy-fatty acid products may have metabolic or functional effects and that the purpose of the beta-oxidation pathway is to generate these products. 相似文献
3.
《Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism》1996,1299(2):267-277
Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation. Some of these factors are metabolites of arachidonic acid, most notably prostacyclin. However, many of the endothelial metabolites of arachidonic acid have not been positively identified. The purpose of these studies is to identify the arachidonic acid metabolites synthesized by bovine coronary endothelial cells. Cultured bovine coronary artery endothelial cells were incubated with [ 14C]arachidonic acid. The incubation media was extracted and the radioactive metabolites resolved by a combination of reverse phase- and normal phase-high pressure liquid chromatography (HPLC). The cells synthesized 6-keto prostaglandin (PG)F1α, PGE2, 12-hydroxyheptadecatrienoic acid (HHT), 12-, 15-, and 11- hydroxyeicosatetraenoic acids (HETE), and 14,15-, 11,12-, 8,9-, and 5,6-epoxyeicosatrienoic acids (EET). Several of the HETEs were further analyzed by chiral-phase HPLC. The cells synthesized predominately 12(S)-, 15(S)-, and 11(R)-HETE. The synthesis of the S optical isomers of 12- and 15-HETE suggested that the 12- and 15-lipoxygenases were present in these cells. 11(R)-HETE is probably derived from cyclooxygenase. They also synthesized smaller amounts of 9-, 8- and 5-HETEs. The structures of the HETEs and EETs were confirmed by mass spectrometry. The release of 6-keto PGF1α and 15-HETE was measured by specific radioimmunoassays. Melittin, thrombin, arachidonic acid and A23187 stimulated the release of both eicosanoids in a concentration-related matter. Under all conditions, the release of 6-keto PGF1α exceed the release of 15-HETE. Therefore, cultured bovine coronary artery endothelial cells synthesize cyclooxygenase, lipoxygenase and cytochrome P-450 metabolites of arachidonic acid. 相似文献
4.
Inceoglu B Schmelzer KR Morisseau C Jinks SL Hammock BD 《Prostaglandins & other lipid mediators》2007,82(1-4):42-49
Early on, intriguing biological activities were found associated with the EETs using in vitro systems. Although the EETs other than the 5,6-isomer, are quite stable chemically, they are quickly degraded enzymatically with the sEH accounting in many cases for much of the metabolism. This rapid degradation often made it difficult to associate biological effects with the administration of EETs and other lipid epoxides particularly in vivo. Thus, it is the power to inhibit the sEH that has facilitated the demonstration of many physiological processes associated with EETs and possibly other epoxy fatty acids. In the last few years it has become clear that major roles of the EETs include modulation of blood pressure and modulation of inflammatory cascades. There are a number of other physiological functions now associated with the EETs including angiogenesis, neurohormone release, cell proliferation, G protein signaling, modulation of ion channel activity, and a variety of effects associated with modulation of NFkappaB. More recently we observed a role of the EETs as modulated by sEHI in reducing non-neuropathic pain. The array of biological effects observed with sEHI illustrates the power of modulating the degradation of chemical mediators in addition to the modulation of their biosynthesis, receptor binding and signal transduction. Many of these biological effects can be modulated by sEHIs but also by the natural eicosanoids and their mimics all of which offer therapeutic potential. 相似文献
5.
6.
Epoxyeicosatrienoic acids (EETs): metabolism and biochemical function 总被引:10,自引:0,他引:10
Epoxyeicosatrienoic acids (EETs), which are synthesized from arachidonic acid by cytochrome P450 epoxygenases, function primarily as autocrine and paracrine effectors in the cardiovascular system and kidney. They modulate ion transport and gene expression, producing vasorelaxation as well as anti-inflammatory and pro-fibrinolytic effects. EETs are incorporated into the sn-2 position of phospholipids and are rapidly mobilized when a cell is treated with a Ca(2+) ionophore, suggesting that they may play a role in phospholipid-mediated signal transduction processes. Soluble epoxide hydrolase (sEH) converts EETs to dihydroxyeicosatrienoic acids (DHETs), and inhibition of sEH is a potential approach for enhancing the biological activity of EETs. EETs also undergo chain-elongation and beta-oxidation, and the accumulation of partial beta-oxidation products increases when sEH is inhibited. Some functional effects of EETs occur through activation of either the guanine nucleotide binding protein Galphas or the Src signal transduction pathways, suggesting that EETs act by binding to membrane receptors. However, other evidence indicates that the modulation of gene expression occurs through an intracellular action of EETs. Because of the diversity of biochemical and functional responses produced by EETs, it is doubtful that a single mechanism or signal transduction pathway can account for all of their actions. 相似文献
7.
Jiang JG Chen RJ Xiao B Yang S Wang JN Wang Y Cowart LA Xiao X Wang DW Xia Y 《Prostaglandins & other lipid mediators》2007,82(1-4):162-174
Endothelial nitric oxide synthase (eNOS) is a key enzyme in NO-mediated cardiovascular homeostasis and its activity is modulated by a variety of hormonal and mechanical stimuli via phosphorylation modification. Our previous study has demonstrated that epoxyeicosatrienoic acids (EETs), the cytochrome P450 (CYP)-dependent metabolites of arachidonic acid, could robustly up-regulate eNOS expression. However, the molecular mechanism underlying the effects of EETs on eNOS remains elusive. Particularly, whether and how EETs affect eNOS phosphorylation is unknown. In the present study, we investigated the effects of EETs on eNOS phosphorylation with cultured bovine aortic endothelial cells (BAECs). BAECs were either treated with exogenous EETs or infected with recombinant adeno-associated virus (rAAV) carrying CYP2C11-CYPOR, CYP102 F87V mutant and CYP2J2, respectively, to increase endogenous EETs. Both addition of EETs and CYP epoxygenase transfection markedly increased eNOS phosphorylation at its Ser1179 and Thr497 residues. Inhibition of phosphatidylinositol 3-kinase (PI3K) with LY294002 prevented EETs-induced increases of eNOS-Ser(P)1179 but had no effect on the phosphorylation status of Thr497. However, inhibitors of protein kinase B (Akt), mitogen-activated protein kinase (MAPK) and MAPK kinase could block phosphorylation of eNOS at both sites. Inhibition of these kinases also attenuated the up-regulation of eNOS expression by EETs. Finally, administration of viral CYP epoxygenases expression vectors into rats enhanced eNOS phosphorylation and function in vivo. Thus, in addition to up-regulating eNOS expression, EETs also augment eNOS function by enhancing eNOS phosphorylation. EETs-induced up-regulation of eNOS phosphorylation and expression appears to involve in both PI3K/Akt and MAPK pathways. 相似文献
8.
Sun D Yan C Jacobson A Jiang H Carroll MA Huang A 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,293(3):R1239-R1246
We studied the roles of estrogen receptors (ER) and aromatase in the mediation of flow-induced dilation (FID) in isolated arteries of male ERalpha-knockout (ERalpha-KO) and wild-type (WT) mice. FID was comparable between gracilis arteries of WT and ERalpha-KO mice. In WT arteries, inhibition of NO and prostaglandins eliminated FID. In ERalpha-KO arteries, N(omega)-nitro-L-arginine methyl ester (L-NAME) inhibited FID by approximately 26%, whereas indomethacin inhibited dilations by approximately 50%. The remaining portion of the dilation was abolished by additional administration of 6-(2-proparglyoxyphenyl)hexanoic acid (PPOH) or iberiotoxin, inhibitors of epoxyeicosatrienoic acid (EET) synthesis and large-conductance potassium channels, respectively. By using an electrophysiological technique, we found that, in the presence of 10 dyne/cm(2) shear stress, perfusate passing through donor vessels isolated from gracilis muscle of ERalpha-KO mice subjected to L-NAME and indomethacin elicited smooth muscle hyperpolarization and a dilator response of endothelium-denuded detector vessels. These responses were prevented by the presence of iberiotoxin in detector or PPOH in donor vessels. Gas chromatography-mass spectrometry (GC-MS) analysis indicated a significant increase in arterial production of EETs in ERalpha-KO compared with WT mice. Western blot analysis showed a significantly reduced endothelial nitric oxide synthase expression but enhanced expressions of aromatase and ERbeta in ERalpha-KO arteries. Treatment of ERalpha-KO arteries with specific aromatase short-interfering RNA for 72 h, knocked down the aromatase mRNA and protein associated with elimination of EET-mediation of FID. Thus, FID in male ERalpha-KO arteries is maintained via an endothelium-derived hyperpolarizing factor/EET-mediated mechanism compensating for reduced NO mediation due, at least in part, to estrogen aromatized from testosterone. 相似文献
9.
We have previously reported that epoxyeicosatrienoic acids (EETs), the cytochrome P450 epoxygenase metabolites of arachidonic acid, are potent stereospecific activators of the cardiac K(ATP) channel. The epoxide group in EET is critical for reducing channel sensitivity to ATP, thereby activating the channel. This study is to identify the molecular sites on the K(ATP) channels for EET-mediated activation. We investigated the effects of EETs on Kir6.2delta C26 with or without the coexpression of SUR2A and on Kir6.2 mutants of positively charged residues known to affect channel activity coexpressed with SUR2A in HEK293 cells. The ATP IC50 values were significantly increased in Kir6.2 R27A, R50A, K185A, and R201A but not in R16A, K47A, R54A, K67A, R192A, R195A, K207A, K222A, and R314A mutants. Similar to native cardiac K(ATP) channel, 5 microM 11,12-EET increased the ATP IC50 by 9.6-fold in Kir6.2/SUR2A wild type and 8.4-fold in Kir6.2delta C26. 8,9- and 14,15-EET regioisomers activated the Kir6.2 channel as potently as 11,12-EET. 8,9- and 11,12-EET failed to change the ATP sensitivity of Kir6.2 K185A, R195A, and R201A, whereas their effects were intact in the other mutants. 14,15-EET had a similar effect with K185A and R201A mutants, but instead of R195A, it failed to activate Kir6.2R192A. These results indicate that activation of Kir6.2 by EETs does not require the SUR2A subunit, and the region in the Kir6.2 C terminus from Lys-185 to Arg-201 plays a critical role in EET-mediated Kir6.2 channel activation. Based on computer modeling of the Kir6.2 structure, we infer that the EET-Kir6.2 interaction may allosterically change the ATP binding site on Kir6.2, reducing the channel sensitivity to ATP. 相似文献
10.
Four isomers of epoxyeicosatrienoic acid (EET) can be formed by cytochrome P-450 oxidation of arachidonic acid: 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. The collision-induced dissociation of the [M-H]- anion at m/z 319 from each of these isomers, using negative-ion fast atom bombardment ionization and a triple quadrupole mass spectrometer, resulted in a series of common ions as well as ions characteristic of each isomer. The common ions were m/z 301 [M-H2O]- and 257 [M-(H2O + CO2)]-. Unique ions resulted from cleavages alpha to the epoxide moiety to form either conjugated carbanions or aldehydes. Mechanisms involving charge site transfer are suggested for the origin of these ions. A distonic ion series that may involve a charge-remote fragmentation mechanism was also observed. The epoxyeicosatrienoic acids were also incorporated into cellular phospholipids following incubation of the free acid with murine mast cells in culture. Negative fast atom bombardment mass spectrometry of purified glycerophosphoethanolamine-EET species and glycerophosphocholine-EET species yielded abundant [M-H]- and [M-CH3]- ions, respectively. The collision-induced dissociation of these specific high-mass ions revealed fragment ions characteristic of the epoxyeicosatrienoic acids incorporated (m/z 319, 301, and 257) and the same unique ions as those seen with each isomeric epoxyeicosatrienoic acid. With this direct method of analysis, phospholipids containing the four positional isomers of EET, including the highly labile (5,6-EET), could be identified as unique molecular species in mast cells incubated with EET. 相似文献
11.
N. Chacos J. Capdevila J.R. Falck S. Manna C. Martin-Wixtrom S.S. Gill B.D. Hammock R.W. Estabrook 《Archives of biochemistry and biophysics》1983,223(2):639-648
Epoxyeicosatrienoic acids, formed during the cytochrome P-450-catalyzed oxidation of arachidonic acid, react with a liver cytosolic epoxide hydrolase to form vicinal diols of eicosatrienoic acid. The role of this cytosolic enzyme, rather than a microsomal bound type, explains previous results illustrating the ability to accumulate epoxides during the in vitro aerobic steady state of oxidative metabolism of arachidonic acid by liver microsomes. The inability of the 5,6-epoxyeicosatrienoic acid to serve as a suitable substrate for this enzyme is discussed in light of recent studies concerning possible unique physiological functions for this metabolite. 相似文献
12.
Action of epoxyeicosatrienoic acids on cellular function 总被引:7,自引:0,他引:7
Epoxyeicosatrienoic acids (EETs), which function primarily as autocrine and paracrine mediators in the cardiovascular and renal systems, are synthesized from arachidonic acid by cytochrome P-450 epoxygenases. They activate smooth muscle large-conductance Ca2+-activated K+ channels, producing hyperpolarization and vasorelaxation. EETs also have anti-inflammatory effects in the vasculature and kidney, stimulate angiogenesis, and have mitogenic effects in the kidney. Many of the functional effects of EETs occur through activation of signal transduction pathways and modulation of gene expression, events probably initiated by binding to a putative cell surface EET receptor. However, EETs are rapidly taken up by cells and are incorporated into and released from phospholipids, suggesting that some functional effects may occur through a direct interaction between the EET and an intracellular effector system. In this regard, EETs and several of their metabolites activate peroxisome proliferator-activated receptor (PPAR) and PPAR, suggesting that some functional effects may result from PPAR activation. EETs are metabolized primarily by conversion to dihydroxyeicosatrienoic acids (DHETs), a reaction catalyzed by soluble epoxide hydrolase (sEH). Many potentially beneficial actions of EETs are attenuated upon conversion to DHETs, which do not appear to be essential under routine conditions. Therefore, sEH is considered a potential therapeutic target for enhancing the beneficial functions of EETs. soluble epoxide hydrolase; eicosanoids; dihydroxyeicosatrienoic acids; cytochrome P-450; peroxisome proliferator-activated receptor 相似文献
13.
Jacobs ER Zeldin DC 《American journal of physiology. Heart and circulatory physiology》2001,280(1):H1-H10
Arachidonic acid metabolites of the cyclooxygenase and lipoxygenase pathways have a variety of important lung functions. Recent observations indicate that cytochrome P-450 (P-450) monooxygenases are also expressed in the lung, localized to specific pulmonary cell types (e.g., epithelium, endothelium, and smooth muscle), and may modulate critical lung functions. This review summarizes recent data on the presence and biological activity of P-450-derived eicosanoids in the pulmonary vasculature and airways, including effects on pulmonary vascular and bronchial smooth muscle tone and airway epithelial ion transport. We hypothesize a number of potential functions of P-450-derived arachidonate metabolites in the lungs such as contribution to hypoxic pulmonary vasoconstriction, regulation of bronchomotor tone, control of the composition of airway lining fluid, and limitation of pulmonary inflammation. Finally, we describe a number of emerging technologies, including congenic and transgenic strains of experimental animals, P-450 isoform-specific inhibitors and inhibitory antibodies, eicosanoid analogs, and vectors for delivery of P-450 cDNAs and antisense oligonucleotides. These tools will facilitate further studies on the contribution of endogenously formed P-450 eicosanoid metabolites to lung function, under both normal and pathological conditions. 相似文献
14.
Liu X Li C Falck JR Harder DR Koehler RC 《American journal of physiology. Heart and circulatory physiology》2012,302(5):H1075-H1085
The increase in cerebral blood flow (CBF) during neuronal activation can be only partially attenuated by individual inhibitors of epoxyeicosatrienoic acids (EETs), cyclooxgenase-2, group I metabotropic glutamate receptors (mGluR), neuronal nitric oxide synthase (nNOS), N-methyl-D-aspartate receptors, or adenosine receptors. Some studies that used a high concentration (500 μM) of the cyclooxygenase-1 inhibitor SC-560 have implicated cyclooxygenase-1 in gliovascular coupling in certain model systems in the mouse. Here, we found that increasing the concentration of SC-560 from 25 μM to 500 μM over whisker barrel cortex in anesthetized rats attenuated the CBF response to whisker stimulation. However, exogenous prostaglandin E(2) restored the response in the presence of 500 μM SC-560 but not in the presence of a cyclooxygenase-2 inhibitor, thereby suggesting a limited permissive role for cyclooxygenase-1. Furthermore, inhibition of the CBF response to whisker stimulation by an EET antagonist persisted in the presence of SC-560 or a cyclooxygenase-2 inhibitor, thereby indicating that the EET-dependent component of vasodilation did not require cyclooxygenase-1 or -2 activity. With combined inhibition of cyclooxygenase-1 and -2, mGluR, nNOS, EETs, N-methyl-D-aspartate receptors, and adenosine 2B receptors, the CBF response was reduced by 60%. We postulated that the inability to completely block the CBF response was due to tissue acidosis resulting from impaired clearance of metabolically produced CO2. We tested this idea by increasing the concentration of superfused bicarbonate from 25 to 60 mM and found a markedly reduced CBF response to hypercapnia. However, increasing bicarbonate had no effect on the initial or steady-state CBF response to whisker stimulation with or without combined inhibition. We conclude that the residual response after inhibition of several known vasodilatory mechanisms is not due to acidosis arising from impaired CO2 clearance when the CBF response is reduced. An unidentified mechanism apparently is responsible for the rapid, residual cortical vasodilation during vibrissal stimulation. 相似文献
15.
Elmarakby AA 《American journal of physiology. Regulatory, integrative and comparative physiology》2012,302(3):R321-R330
Cardiovascular disease (CVD) is the leading cause of mortality worldwide, and it is well known that end-stage renal disease (ESRD) is a profound consequence of the progression of CVD. Present treatments only slow CVD progression to ESRD, and it is imperative that new therapeutic strategies are developed to prevent the incidence of ESRD. Because epoxyeicosatrienoic acids (EETs) have been shown to elicit reno-protective effects in hypertensive animal models, the current review will focus on addressing the reno-protective mechanisms of EETs in CVD. The cytochrome P-450 epoxygenase catalyzes the oxidation of arachidonic acid to EETs. EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs) with vasodilatory, anti-inflammatory, antihypertensive, and antiplatelet aggregation properties. EETs also have profound effects on vascular migration and proliferation and promote angiogenesis. The progression of CVD has been linked to decreased EETs levels, leading to the concept that EETs should be therapeutically targeted to prevent end-organ damage associated with CVD. However, EETs are quickly degraded by the enzyme soluble epoxide hydrolase (sEH) to their less active diols, dihydroxyeicosatrienoic acids (DHETs). As such, one way to increase EETs level is to inhibit their degradation to DHETs by using sEH inhibitors. Inhibition of sEH has been shown to effectively reduce blood pressure and organ damage in experimental models of CVD. Another approach to target EETs is to develop EET analogs with improved solubility and resistance to auto-oxidation and metabolism by sEH. For example, stable ether EET analogs dilate afferent arterioles and lower blood pressure in hypertensive rodent animal models. EET agonists also improve insulin signaling and vascular function in animal models of metabolic syndrome. 相似文献
16.
During periods of ischemia and vascular injury, factors are released which recruit monocytes and polymorphonuclear leukocytes (PMNs) to the site of injury by promoting adherence to the endothelium and transmigration across the endothelial cell (EC) layer. During coronary artery stenosis, we have shown that the endothelium-derived, cytochrome P450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are elevated. Therefore, we examined if the EETs could stimulate PMN adherence to cultured ECs. Pretreatment of ECs with EETs for either 30 min or 4 hr did not alter the adherence of 51Cr-labelled PMNs to ECs while phorbol myristate acetate (PMA) produced a 4-fold increase in PMN adherence. The combination of EETs and PMA did not significantly augment or diminish PMA-induced PMN adherence to ECs. When ECs and 51Cr-labelled PMNs were coincubated, treatment with EETs alone did not alter PMN adherence. However, when EETs and PMA were added together during the coincubation of ECs and 51Cr-labelled PMNs, the EETs produced a concentration-related decrease in PMN adherence. Microscopic analysis of the culture media bathing the cells revealed aggregates of the labeled PMNs. We examined the effects of the EETs on PMN aggregation. 8,9-EET (10, 50, and 100 microM) increased PMN aggregation (7 +/- 3, 35 +/- 10, and 65 +/- 11%) and intracellular calcium by 1.7 +/- 0.5, 4.7 +/- 1.4, and 6.8 +/- 2.3-fold above basal. 5,6-, 11,2- and 14,15-EETs also stimulated aggregation. FMLP stimulated the production of superoxide; however, 8,9-EET did not. These observations indicate that the decrease in PMN adherence observed in the coincubation experiment is the result of EET-induced PMN aggregation. Given the increase in EET production during coronary artery stenosis, these data may provide insight into their potential biological significance during myocardial ischemia and vascular injury. 相似文献
17.
18.
The synthetic random polymers poly(Glu,Lys,Phe), poly(Glu,Phe) and poly(Glu,Lys,Tyr), have been used to study some parameters associated with the genetic control of the immune response (Ir) of mice. Mice of haplotypes d and q respond well to GLPhe. Mice of haplotypes k and b were previously shown to be nonresponders, whereas the F1 (k × b) responded via a phenomenon involving “complementation” between 2 Ir genes, i.e., one gene product from IA, and another from IE form the requisite two-chain Ia “receptor” macromolecules (EE). When it was determined that mice of haplotypes q and k respond to GPhe, and the controlling gene maps to IA, (Aα Aβ), we tested the theory that mice having q and k alleles in IA might respond to GLPhe via recognition of GPhe determinants in the terpolymer. Employing the in vitro proliferative response to T-cells from mice immunized with GLPhe and stimulated with GPhe and GLT (cross-reaction), it was determined that different determinant selection patterns exist in the recognition of GLPhe. Mice having q and k alleles in IA can respond to GLPhe via one mechanism, and other mice having d and f alleles respond via other mechanisms. The F1 of the appropriate nonresponder strains forming the Ia molecule (EE) still exhibit the “complementation” phenomenon. Rabbit antibody against anti-GPhe (ID) from SWR mice (H-2q)(anti-ID) was prepared. This anti-ID strongly inhibited the binding of 125I-GPhe by anti-GPhe antisera produced only in mice of H-2q haplotype and had no effect on the binding of GPhe by anti-GPhe antisera produced in mice of other haplotypes. The anti-ID also inhibited the binding of 125I-GLPhe and 125I-GPhe by anti-GLPhe antisera produced only in mice of H-2q haplotype. These specificities were also confirmed by the inhibition of the plaque-forming cells. It was concluded that the antibodies produced in mice of H-2q haplotype against GPhe and GLPhe share common idiotypic determinants that are recognized by the anti-idiotypic antiserum. 相似文献
19.
AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress 总被引:11,自引:0,他引:11
AMP-activated protein kinase (AMPK) is a stress-activated protein kinase that is regulated by hypoxia and other cellular stresses that result in diminished cellular ATP levels. Here, we investigated whether AMPK signaling in endothelial cells has a role in regulating angiogenesis. Hypoxia induced the activating phosphorylation of AMPK in human umbilical vein endothelial cells (HUVECs), and AMPK activation was required for the maintenance of pro-angiogenic Akt signaling under these conditions. Suppression of AMPK signaling inhibited both HUVEC migration to VEGF and in vitro differentiation into tube-like structures in hypoxic, but not normoxic cultures. Dominant-negative AMPK also inhibited in vivo angiogenesis in Matrigel plugs that were implanted subcutaneously in mice. These data identify AMPK signaling as a new regulator of angiogenesis that is specifically required for endothelial cell migration and differentiation under conditions of hypoxia. As such, endothelial AMPK signaling may be a critical determinant of blood vessel recruitment to tissues that are subjected to ischemic stress. 相似文献
20.
Inflammation is a key element in many cardiovascular diseases. Both estrogen loss, caused by menopause, and aging have inflammatory consequences. Epoxyeicosatrienoic acids (EETs) are anti-inflammatory molecules synthesized by various cytochrome P450 (Cyp) enzymes from arachidonic acid. EETs are in the third (Cytochrome P450) pathway of arachindonic acid metabolism, others being cyclooxygenases and lipoxygenases. We hypothesized that aging and estrogen loss would reduce levels of anti-inflammatory EETs. Adult (6 mo) and aged (22 mo) ovariectomized rats with (OP) and without (Ovx) 17-∃-estradiol replacement were used in this study. Mass spectrometry was used to measure levels of EETs and their metabolites, dihydroxyeicosatrienoic acids (DHETs). Levels of Cyp2C2, Cyp2C6, and Cyp2J2, the principal Cyps responsible for EETs synthesis, as well as soluble epoxide hydrolase (sEH), which metabolizes EETS to DHETs, were determined via western blot. Overall Cyp levels decreased with age, though Cyp2C6 increased in the liver. sEH was increased in the kidney with estrogen replacement. Despite protein changes, no differences were measured in plasma or aortic tissue levels of EETs. However, plasma 14,15 DHET was increased in aged Ovx, and 5,6 DHET in adult OP. In conclusion neither aging nor estrogen loss decreased the anti-inflammatory EETs in the cardiovascular system. 相似文献