首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Reservosomes are lysosome-related organelles found in Trypanosoma cruzi epimastigotes. They represent the last step in epimastigote endocytic route, accumulating a set of proteins and enzymes related to protein digestion and lipid metabolism. The reservosome matrix contains planar membranes, vesicles and lipid inclusions. Some of the latter may assume rectangular or sword-shaped crystalloid forms surrounded by a phospholipid monolayer, resembling the cholesterol crystals in foam cells.

Methodology/Principal Findings

Using Nile Red fluorimetry and fluorescence microscopy, as well as electron microscopy, we have established a direct correlation between serum concentration in culture medium and the presence of crystalloid lipid inclusions. Starting from a reservosome purified fraction, we have developed a fractionation protocol to isolate lipid inclusions. Gas-chromatography mass-spectrometry (GC-MS) analysis revealed that lipid inclusions are composed mainly by cholesterol and cholesterol esters. Moreover, when the parasites with crystalloid lipid-loaded reservosomes were maintained in serum free medium for 48 hours the inclusions disappeared almost completely, including the sword shaped ones.

Conclusions/Significance

Taken together, our results suggest that epimastigote forms of T. cruzi store high amounts of neutral lipids from extracellular medium, mostly cholesterol or cholesterol esters inside reservosomes. Interestingly, the parasites are able to disassemble the reservosome cholesterol crystalloid inclusions when submitted to serum starvation.  相似文献   

2.
Trypanosoma cruzi undergoes differentiation in the rectum of triatomine, where increased osmolarity is caused mainly by elevated content of NaCl from urine. Early biochemical events in response to high osmolarity in this parasite have not been totally elucidated. In order to clarify the relationship between these events and developmental stages of T. cruzi, epimastigotes were subjected to hyperosmotic stress, which caused activation of Na(+)/H(+) exchanger from acidic vacuoles and accumulation of inositol trisphosphate (InsP(3)). Suppression of InsP(3) levels was observed in presence of intracellular Ca(2+) chelator or pre-treatment with 5-(N-ethyl-N-isopropyl)-amiloride (EIPA), which also inhibited the alkalinization of acidic vacuoles via a Na(+)/H(+) exchanger and the consequent increase in cytosolic calcium. These effects were activated and inhibited by PMA and Chelerythrine respectively, suggesting regulation by protein kinase C. The T. cruzi Na(+)/H(+) exchanger, TcNHE1, has 11 transmembrane domains and is localized in acidic vacuoles of epimastigotes. The analyzed biochemical changes were correlated with morphological changes, including an increase in the size of acidocalcisomes and subsequent differentiation to an intermediate form. Both processes were delayed when TcNHE1 was inhibited by EIPA, suggesting that these early biochemical events allow the parasite to adapt to conditions faced in the rectum of the insect vector.  相似文献   

3.
Carboxylesterase activity in Trypanosoma cruzi was found mainly in the microsomal (40%) and the cytosolic fraction (26%). The Vmax for p-nitrophenyl acetate was 28.50 and 17.60 nmol per min and mg of protein for the microsomal and the cytosolic fractions, respectively. The Km was 0.78 mM for the microsomal activity and 0.55 mM for the cytosolic activity. The inhibition rate constant with N-ethylmaleimide were 38.10 M-1 min-1 and 2.56 M-1 min-1 for the cytosolic and the microsomal enzymes, respectively. The rate constants with Paraoxon were 8,360 M-1 X min-1 and 32,600 M-1 X min-1. Polyacrylamide gel electrophoresis under nondenaturing conditions showed three bands of microsomal activity with M.W. of 63, 136 and 153 kDA. Similarly, three bands of cytosolic activity with M.W. of 126, 294 and 479 kDA were identified.  相似文献   

4.
5.
Amphotericin B (AmB) autoxidation resulted in oxygen consumption, superoxide anion formation and production of thiobarbituric acid (TBA)-reactive material (malondialdehyde). Malondialdehyde formation increased after incubation of the drug with ascorbate-ADP-FeCl3. Growth of Trypanosoma cruzi epimastigotes in the presence of AmB induced a decrease in the free fatty acid content of the cells (57% in control cells vs. 7% in AmB-treated cells), and in the proportion of unsaturated fatty acids as well as cell killing. No changes were detected on sterol content. No evidence was found for lipid peroxidation as a mechanism of cell injury by this antibiotic.  相似文献   

6.
Differentiation of Trypanosoma cruzi epimastigotes to metacyclic trypomastigotes occurs in the insect rectum, after adhesion of the epimastigotes to the intestinal wall. We investigated the effect of the nutritional stress on the metacyclogenesis process in vitro by incubating epimastigotes in the chemically defined TAU3AAG medium supplemented with different nutrients. Addition of fetal bovine serum induced epimastigote growth but inhibited metacyclogenesis. In this medium, few parasites attached to the substrate. Ultrastructural analysis demonstrated reservosomes at the posterior end of the epimastigotes. Incubation of the cells in TAU3AAG medium containing gold-labeled transferrin resulted in high endocytosis of the marker by both adhered and free-swimming epimastigotes. No intracellular gold particles could be detected in trypomastigotes. Addition of transferrin gold complexes to adhered epimastigotes cultivated for 4 days in TAU3AAG medium resulted in decrease of both metacyclogenesis and adhesion to the substrate, as compared with parasites maintained in transferrin-free medium. Adhesion to the substrate is triggered by nutritional stress, and proteins accumulated in reservosomes are used as energy source during the differentiation. A close relationship exists among nutritional stress, endocytosis of nutrients, adhesion to the substrate, and cell differentiation in T. cruzi epimastigotes.  相似文献   

7.
Phosphatase activity in intact Trypanosoma cruzi epimastigotes has been demonstrated. After subcellular fractionation three activities were characterized: (a) a membrane-bound microsomal acid activity with an optimum pH of 4.0 and a Km of 1.2 mM, strongly inhibited by tartrate and fluoride; (b) a soluble cytosolic acid activity with an optimum pH of 5.5 and a Km of 0.95 mM, strongly inhibited by p-hydroxymercuribenzoate, EDTA and copper ions and activated by cyanide, manganese and magnesium ions; and (c) a soluble cytosolic alkaline activity with an optimum pH of 8.0 and a Km of 3.8 mM, inhibited by p-hydroxymercuribenzoate, fluoride, EDTA, and copper, calcium and zinc ions. This activity was increased by magnesium and manganese ions.  相似文献   

8.
Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane.  相似文献   

9.
BACKGROUND AND AIMS: Trypanosoma cruzi is the causative agent of Chagas disease or American trypanosomiasis. The parasite manifests a nutritional requirement for heme compounds because of its biosynthesis deficiency. The aim of this study has been to investigate the presence of metabolites and enzymes of porphyrin pathway, as well as ALA formation in epimastigotes of T. cruzi, Tulahuén strain, Tul 2 stock. METHODS: Succinyl CoA synthetase, 5-aminolevulinic acid (ALA) synthetase, 4,5-dioxovaleric (DOVA) transaminase, ALA dehydratase and porphobilinogenase activities, as well as ALA, porphobilinogen (PBG), free porphyrins and heme content were measured in a parasite cells-free extract. Extracellular content of these metabolites was also determined. RESULTS: DOVA, PBG, porphyrins and heme were not detected in acellular extracts of T. cruzi. However ALA was detected both intra- and extracellularly This is the first time that the presence of ALA (98% of intracellularly formed ALA) is demonstrated in the extracellular medium of a parasite culture. Regarding the ALA synthesizing enzymes, DOVA transaminase levels found were low (7.13+/-0.49EU/mg protein), whilst ALA synthetase (ALA-S) activity was undetectable. A compound of non-protein nature, low molecular weight, heat unstable, inhibiting bacterial ALA-S activity was detected in an acellular extract of T. cruzi. This inhibitor could not be identified with either ALA, DOVA or heme. CONCLUSIONS: ALA synthesis is functional in the parasite and it would be regulated by the heme levels, both directly and through the inhibitor factor detected. ALA formed can not be metabolized further, because the necessary enzymes are not active, therefore it should be excreted to avoid intracellular cytotoxicity.  相似文献   

10.
Summary Epimastigotes from several Trypanosoma cruzi stocks were labeled by iodination with Chloramine T and their proteins detected by gel electrophoresis and autoradiography.The labeled proteins from the parasite surface were detected after immunoprecipitation with antisera against fixed trypanosomes or from infected rabbits. These antisera were able to recognize one or more proteins in all T. cruzi isolates analyzed, but the individual patterns differed from each other. Variations in the surface protein patterns were also observed in two Tulahuen stocks kept during several years under different conditions. Growth medium as well as the stage of growth at which the parasites were collected had also an effect upon the relative amount of the observed labeled proteins.  相似文献   

11.
Carboxylesterase activity corresponding to types A and B has been demonstrated in intact T. cruzi epimastigotes as shown by the hydrolysis of several esters of p-nitrophenol and the effect of suitable inhibitors. The in situ carboxylesterase activity was described by the Michaelis Menten kinetic approach. The apparent Vmax for the acetate and butyrate esters were 66.5 and 165.3 nmol hydrolysed per min and mg of protein respectively. An Arrhenius plot of the temperature dependent activity showed two sharp linear regions with a transition temperature of 31.6 degrees C. and energies of activation of 6.2 and 14.1 kcal/mol. The in situ carboxylesterase activity was inhibited 26% by paraoxon and 56% by N-ethylmaleimide, but not by p-chloromercuribenzoate.  相似文献   

12.
13.
Trypanosoma cruzi epimastigotes actively metabolize metronidazole under aerobic conditions to a polar compound tentatively identified as 2-methyl-5-nitroimidazole-1-yl-acetic acid. The rate of metabolite formation is increased by more than 50% by pretreatment with phenobarbital and inhibited by SKF-525A and metyrapone. The reaction is dramatically stimulated by the addition of flavone which suggests that the metabolite is produced via the cytochrome P-450 system. Apparently the nitro group in the metabolite is maintained intact. Detoxication reactions catalyzed by cytochrome P-450 appear to be more important than previously suspected as a basis to explain at least partially the resistance of these organisms to known antimicrobial agents. However, other factors such as the fate of nitro substituent in metronidazole require further evaluation.  相似文献   

14.
Cytoskeletal components were visualized in epimastigote forms of Trypanosoma cruzi by double immunofluorescence microscopy using monospecific antibodies against tubulin and against actin. Intense staining of the flagellum and the edges of the cell body was observed when the cells were stained with anti-tubulin, reflecting the presence of the basal bodies, the flagellar axoneme and the subpellicular microtubules. A less intense staining was seen in the cell body of epimastigotes stained with anti-actin. However, an intense staining was observed with this antibody in the flagellum, in a pattern similar to that observed with anti-tubulin. It is suggested that the paraxial structure, which is formed by a complex array of 6-nm-thick microfilaments is composed, at least in part, of actin.  相似文献   

15.
Reproduction of Trypanosoma cruzi epimastigotes in a liver infusion-tryptose-serum medium was inhibited by the antimycotic agent ketoconazole. Effective drug concentrations also blocked the biosynthesis of the parasite's fungal-type sterols at the stage of C-14 demethylation, as demonstrated by radioisotopic, chromatographic and mass spectrometric methods. Coincidently, a 4,4,14 alpha-trimethyl sterol, 24-methylenedihydrolanosterol, accumulated and came to replace as much as three fourths of the free sterol content of the cells. Precedents from studies with fungi are invoked to suggest that the cytotoxicity of ketoconazole for T. cruzi is a consequence of the inability of 24-methylenedihydrolanosterol to perform the membrane lipid bilayer functions of the normal epimastigote sterols.  相似文献   

16.
Two glutamate dehydrogenases, NADH-linked (EC 1.2.1.2) and NADPH-linked (EC 1.2.1.4) were isolated from the epimastigote forms of Trypanosoma cruzi and purified. Both enzymes exist as hexamers. The molecular weights of the native NADH-and NADPH-linked glutamate dehydrogenases were estimated to be 360,000 and 265,000, respectively, and those of the subunits to be 58,000 and 43,000, respectively. The isoelectric point of the NADH-linked dehydrogenase is at pH 5.25 and that of the NADPH-linked enzyme at pH 5.1. The activities of both enzymes are regulated by product inhibition. In addition, purine nucleotides were shown to be potent inhibitors of the NADH-linked glutamate dehydrogenase.  相似文献   

17.
Trypanosoma cruzi's antioxidant system is unique and relevant to the parasite. In this study, quantitative assays were performed to determine cytosolic and mitochondrial tryparedoxin peroxidases and superoxide dismutases expression (TcCPx, TcMPx, SODB and SODA) in correlation to H(2)O(2) release and O(2)(-) production. Differences were observed regarding H(2)O(2) release and O(2)(-) production between strains and along the growth curve. All of the enzymes studied exhibited varied expression as a function of time in culture. Although at lower levels, the Y strain exhibited the same pattern of Tulahuen 2 enzyme expression for all of the proteins studied, except SODA. In the stationary phase, the degree of expression of all of the enzymes in the Y strain returned to similar levels as those detected in the log phase with the exception of TcCPx and SODA. In Tulahuen 2, a higher expression of TcMPx, SODA and SODB was detected in the early stationary phase, and a slight decrease was observed in the late stationary phase for each enzyme, excluding TcMPx, which exhibited a marked decrease, and TcCPx, which increased its level. Because of the significance of ROS in redox signaling, these differences in enzyme expression underscore the importance of these parameters for epimastigote proliferation.  相似文献   

18.
Pyruvate phosphate dikinase (PPDK) was recently reported in trypanosomatids, but its metabolic function is not yet known. The present work deals with the cellular localization and the function of the Trypanosoma cruzi enzyme. First, we show by digitonin titration and cell fractionation that the enzyme was essentially present in the glycosome matrix of the epimastigote form. Second, we address the issue of the direction of the reaction inside the glycosome for one part, our bibliographic survey evidenced a quite exergonic ΔG°′ (at least −5.2 kcal/mol at neutral pH and physiologic ionic strength); for another part, no pyrophosphatase (PPase) could be detected in fractions corresponding to the glycosomes; therefore, glycosomal PPDK likely works in the direction of pyruvate production. Third, we address the issue of the origin of the glycosomal pyrophosphate (PPi): several synthetic pathways known to produce PPi are already considered to be glycosomal. This work also indicates the presence of an NADP+-dependent β-oxidation of palmitoyl-CoA in the glycosome. Several pyruvate-consuming activities, in particular alanine dehydrogenase (ADH) and pyruvate carboxylase (PC), were detected in the glycosomal fraction. PPDK appears therefore as a central enzyme in the metabolism of the glycosome of T. cruzi by providing a link between glycolysis, fatty acid oxidation and biosynthetic PPi-producing pathways. Indeed, PPDK seems to replace pyrophosphatase in its classical thermodynamic role of displacing the equilibrium of PPi-producing reactions, as well as in its role of eliminating the toxic PPi.  相似文献   

19.
The unicellular stercorarian protozoan parasite Trypanosoma cruzi is the etiological agent of Chagas' disease. The epimastigote form of the parasite is covered in a dense coat of glycoinositol phospholipids and short glycosylphosphatidylinositol (GPI)-anchored mucinlike molecules. Here, we describe the purification and structural characterization of NETNES, a relatively minor but unusually complex glycoprotein that coexists with these major surface components. The mature glycoprotein is only 13 amino acids in length, with the sequence AQENETNESGSID, and exists in two forms with either four or five post-translational modifications. These are either one or two asparagine-linked oligomannose glycans, two linear alpha-mannose glycans linked to serine residues via phosphodiester linkages, and a GPI membrane anchor attached to the C-terminal aspartic acid residue. The variety and density of post-translational modifications on an unusually small peptide core make NETNES a unique type of glycoprotein. The N-glycans are predominantly Manalpha1-6(Manalpha1-3) Manalpha1-6(Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAcbeta1-Asn; the phosphate-linked glycans are a mixture of (Manalpha1-2)0-3Man1-P-Ser; and the GPI anchor has the structure Manalpha1-2(ethanolamine phosphate)Manalpha1-2Manalpha1-6Manalpha1-4(2-aminoethylphosphonate-6)GlcNalpha1-6-myo-inositol-1-P-3(sn-1-O-(C16:0)alkyl-2-O-(C16:0)acylglycerol). Four putative NETNES genes were found in the T. cruzi genome data base. These genes are predicted to encode 65-amino acid proteins with cleavable 26-amino acid N-terminal signal peptides and 26-amino acid C-terminal GPI addition signal peptides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号