首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pivot shift test reproduces a complex instability of the knee joint following rupture of the anterior cruciate ligament. The grade of the pivot shift test has been shown to correlate to subjective criteria of knee joint function, return to physical activity and long-term outcome. This severity is represented by a grade that is attributed by a clinician in a subjective manner, rendering the pivot shift test poorly reliable.The purpose of this study was to unveil the kinematic parameters that are evaluated by clinicians when they establish a pivot shift grade. To do so, eight orthopaedic surgeons performed a total of 127 pivot shift examinations on 70 subjects presenting various degrees of knee joint instability. The knee joint kinematics were recorded using electromagnetic sensors and principal component analysis was used to determine which features explain most of the variability between recordings. Four principal components were found to account for most of this variability (69%), with only the first showing a correlation to the pivot shift grade (r=0.55). Acceleration and velocity of tibial translation were found to be the features that best correlate to the first principal component, meaning they are the most useful for distinguishing different recordings. The magnitudes of the tibial translation and rotation were amongst those that accounted for the least variability. These results indicate that future efforts to quantify the pivot shift should focus more on the velocity and acceleration of tibial translation and less on the traditionally accepted parameters that are the magnitudes of posterior translation and external tibial rotation.  相似文献   

2.
The pivot shift test is a commonly used clinical examination by orthopedic surgeons to evaluate knee function following injury. However, the test can only be graded subjectively by the examiner. Therefore, the purpose of this study is to develop software for a computer tablet to quantify anterior translation of the lateral knee compartment during the pivot shift test. Based on the simple image analysis method, software for a computer tablet was developed with the following primary design constraint – the software should be easy to use in a clinical setting and it should not slow down an outpatient visit. Translation of the lateral compartment of the intact knee was 2.0 ± 0.2 mm and for the anterior cruciate ligament-deficient knee was 8.9 ± 0.9 mm (p < 0.001). Intra-tester (ICC range = 0.913 to 0.999) and inter-tester (ICC = 0.949) reliability were excellent for the repeatability assessments. Overall, the average percent error of measuring simulated translation of the lateral knee compartment with the tablet parallel to the monitor increased from 2.8% at 50 cm distance to 7.7% at 200 cm. Deviation from the parallel position of the tablet did not have a significant effect until a tablet angle of 45°. Average percent error during anterior translation of the lateral knee compartment of 6mm was 2.2% compared to 6.2% for 2 mm of translation. The software provides reliable, objective, and quantitative data on translation of the lateral knee compartment during the pivot shift test and meets the design constraints posed by the clinical setting.  相似文献   

3.
Acceptance of the klap speed skate was fully realized on the world speed skating scene in 1997. However, one of the most important unknowns regarding the klapskate was the positioning of the point of foot rotation (pivot point), which is believed to play an important role in optimizing klapskate performance. The purposes of this study were to explore the ankle, knee, and hip joint mechanical changes that occurred when the pivot point location was modified, and to determine whether maximal ankle torques provide predictive ability as to where the optimal pivot point positioning is for a skater. We tested 16 proficient skaters at three pivot point PP) locations, ranging from just in front of the metatarsal-phalangeal joint to just in front of the first phalangeal joint. Of the 16 skaters, 10 were tested at a fourth position; tip of the toe. Push phase kinetics and kinematics were measured on a modified slide board. The optimal PP for each skater was defined as the position that allowed him to generate the most total push energy. Maximum voluntary static torque measures of the ankle and knee were collected on a Biodex dynamometer. Overall, anterior pivot point shifting led to a significant increase in ankle energy generated and a decrease in knee energy generated, with no significant change at the hip joint. We found no significant correlations between the static strength measures and the skaters' optimal pivot points.  相似文献   

4.
The aim of the present study was to analyze the net joint moment distribution, joint forces and kinematics during cycling to exhaustion. Right pedal forces and lower limb kinematics of ten cyclists were measured throughout a fatigue cycling test at 100% of POMAX. The absolute net joint moments, resultant force and kinematics were calculated for the hip, knee and ankle joint through inverse dynamics. The contribution of each joint to the total net joint moments was computed. Decreased pedaling cadence was observed followed by a decreased ankle moment contribution to the total joint moments in the end of the test. The total absolute joint moment, and the hip and knee moments has also increased with fatigue. Resultant force was increased, while kinematics has changed in the end of the test for hip, knee and ankle joints. Reduced ankle contribution to the total absolute joint moment combined with higher ankle force and changes in kinematics has indicated a different mechanical function for this joint. Kinetics and kinematics changes observed at hip and knee joint was expected due to their function as power sources. Kinematics changes would be explained as an attempt to overcome decreased contractile properties of muscles during fatigue.  相似文献   

5.
Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p < 0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom.  相似文献   

6.
Previous findings from studies of demanding tasks in humans and slope walking in quadrupeds suggest that human slope walking may require specialized neural control strategies. The goal of this investigation was to gain insight into these strategies by quantifying lower limb kinematics and kinetics during up- and downslope walking. Nine healthy volunteers walked at a self-selected speed on an instrumented ramp at each of five grades (-39%, -15%, 0%, +15%, +39%; or -21 degrees, -8.5 degrees, 0 degrees, +8.5 degrees, +21 degrees, respectively). For each subject, the selected speed was maintained at all grades to minimize the effect of speed on gait dynamics. Points of interest were identified in the kinematic and kinetic outcome measures and compared across grades; a significant grade effect was found for all points except the magnitude of the peak hip extensor moment during late stance. Kinematic postural changes were consistent with the need to raise the limb for toe clearance and heel strike and to lift the body during upslope walking, and to control the descent of the body during downslope walking. The support moment increased significantly during both upslope and downslope walking compared to level: the increases were predominantly due to the increasing hip extensor moment during upslope walking, and to the increasing knee extensor moment during downslope walking. In addition, the hip and knee joint moment patterns showed significant differences from the patterns observed during level walking. This non-uniform distribution of joint moment increases during up- and downslope walking compared to level walking suggests that these three tasks are not governed by the same control strategy.  相似文献   

7.
Outcomes of total knee arthroplasty (TKA) are dependent on surgical technique, patient variability, and implant design. Non-optimal design or alignment choices may result in undesirable contact mechanics and joint kinematics, including poor joint alignment, instability, and reduced range of motion. Implant design and surgical alignment are modifiable factors with potential to improve patient outcomes, and there is a need for robust implant designs that can accommodate patient variability. Our objective was to develop a statistical shape-function model (SFM) of a posterior stabilized implanted knee to instantaneously predict joint mechanics in an efficient manner. Finite element methods were combined with Latin hypercube sampling and regression analyses to produce modeling equations relating nine implant design and six surgical alignment parameters to tibiofemoral (TF) joint mechanics outcomes during a deep knee bend. A SFM was developed and TF contact mechanics, kinematics, and soft tissue loads were instantaneously predicted from the model. Average normalized root-mean-square error predictions were between 2.79% and 9.42%, depending on the number of parameters included in the model. The statistical shape-function model generated instantaneous joint mechanics predictions using a maximum of 130 training simulations, making it ideally suited for integration into a patient-specific design and alignment optimization pipeline. Such a tool may be used to optimize kinematic function to achieve more natural motion or minimize implant wear, and may aid the engineering and clinical communities in improving patient satisfaction and surgical outcomes.  相似文献   

8.
BackgroundVariability in joint kinematics is necessary for adaptability and response to everyday perturbations; however, intrinsic neuromotor changes secondary to stroke often cause abnormal movement patterns. How these abnormal movement patterns relate to joint kinematic variability and its influence on post-stroke walking impairments is not well understood.ObjectiveThe purpose of this study was to evaluate the movement variability at the individual joint level in the paretic and non-paretic limbs of individuals post-stroke.MethodsSeven individuals with hemiparesis post-stroke walked on a treadmill for two minutes at their self-selected speed and the average speed of the six-minute walk test while kinematics were recorded using motion-capture. Variability in hip, knee, and ankle flexion/extension angles during walking were quantified with the Lyapunov exponent (LyE). Interlimb differences were evaluated.ResultsThe paretic side LyE was higher than the non-paretic side at both self-selected speed (Hip: 50%; Knee: 74%), and the average speed of the 6-min walk test (Hip: 15%; Knee: 93%).ConclusionDifferences in joint kinematic variability between limbs of persons post-stroke supports further study of the source of non-paretic limb deviations as well as the clinical implications of joint kinematic variability in persons post-stroke. The development of bilaterally-targeted post-stroke gait interventions to address variability in both limbs may promote improved outcomes.  相似文献   

9.
Increased femoral antetorsion leads to several gait deviations, and amongst others, an increased knee flexion was reported in mid and terminal stance. Therefore, the purpose of this retrospective study was to identify gait deviations caused by increased femoral antetorsion and to perform subgroup analyses based on sagittal knee kinematics. Patients with isolated, CT confirmed increased femoral antetorsion (n = 42) and age-matched typically developing children (TDC, n = 17) were included in this study. Patients were referred to gait analysis because of gait abnormalities going along with an increased femoral antetorsion ≥30°. Kinematic and kinetic data were recorded during 3D gait analysis and three valid gait cycles were analyzed. Principal component (PC) analysis was used to achieve data transformation. A linear mixed model was used to estimate the group effect of PC-scores of retained PCs explaining 90% of the cumulative variance. Group effects of PC-scores revealed that patients walked with more flexed hips and greater anterior pelvic tilt throughout the gait cycle. Knee flexion was increased in patients during mid and terminal stance. Increased frontal plane knee and hip joint moments were found for patients compared to TDC. Furthermore, dividing patients into two subgroups based on their sagittal knee kinematics showed that kinematic gait deviations were more pronounced in patients with higher femoral antetorsion, while deviations in joint moments were more pronounced in patients with lower femoral antetorsion. Increased femoral antetorsion showed alterations in all lower limb joints and may be not only a cosmetic problem. Therefore, 3D gait analysis should be used for clinical management and operative treatment should be considered depending on severity of gait deviations.  相似文献   

10.
Most E  Axe J  Rubash H  Li G 《Journal of biomechanics》2004,37(11):1743-1748
Various flexion axes have been used in the literature to describe knee joint kinematics. This study measured the passive knee kinematics of six cadaveric human knee specimens using two widely accepted flexion axes; transepicondylar axis and the geometric center axis. These two axes were found to form an angle of 4.0 degrees +/- 0.8 degrees. The tibial rotation calculated using the transepicondylar axis was significantly different than the rotation obtained using the geometric center axis for the same knee motion. At 90 degrees of flexion, the tibial rotation obtained using the transepicondylar axis was 4.8 degrees +/- 9.4 degrees whereas the rotation recorded using the geometric center axis at the same flexion angle was 13.8 degrees +/- 10.2 degrees. At 150 degrees of knee flexion, the rotations obtained from the transepicondylar and the geometric center axes were 7.2 degrees +/- 5.7 degrees and 19.9 degrees +/- 6.9 degrees, respectively. The data suggest that a clear definition of the flexion axis is necessary when reporting knee joint kinematics.  相似文献   

11.
A new generation of surgical tools, known as surgical navigation systems, has been developed to help surgeons install implants more accurately and reproducibly. Navigation systems also record quantitative information such as joint range of motion, laxity, and kinematics intra-operatively. This article reviews the history of surgical navigation for total knee arthroplasty, the biomechanical principles associated with this technology, and the related clinical research studies. We describe how navigation has the potential to address three main challenges for total knee arthroplasty: ensuring excellent and consistent outcomes, treating younger and more physically active patients, and enabling less invasive surgery.  相似文献   

12.
Estimating joint kinematics from skin-marker trajectories recorded using stereophotogrammetry is complicated by soft tissue artefact (STA), an inexorable source of error. One solution is to use a bone pose estimator based on multi-body kinematics optimisation (MKO) embedding joint constraints to compensate for STA. However, there is some debate over the effectiveness of this method. The present study aimed to quantitatively assess the degree of agreement between reference (i.e., artefact-free) knee joint kinematics and the same kinematics estimated using MKO embedding six different knee joint models. The following motor tasks were assessed: level walking, hopping, cutting, running, sit-to-stand, and step-up. Reference knee kinematics was taken from pin-marker or biplane fluoroscopic data acquired concurrently with skin-marker data, made available by the respective authors. For each motor task, Bland-Altman analysis revealed that the performance of MKO varied according to the joint model used, with a wide discrepancy in results across degrees of freedom (DoFs), models and motor tasks (with a bias between −10.2° and 13.2° and between −10.2 mm and 7.2 mm, and with a confidence interval up to ±14.8° and ±11.1 mm, for rotation and displacement, respectively). It can be concluded that, while MKO might occasionally improve kinematics estimation, as implemented to date it does not represent a reliable solution to the STA issue.  相似文献   

13.
The recent development of a soft tissue artifact (STA) suppression method allows us to re-evaluate the tibiofemoral kinematics currently linked to non-contact knee injuries. The purpose of this study was therefore to evaluate knee joint kinematics and kinetics in six degrees of freedom (DoF) during the loading phases of a jump lunge and side cut using this in silico method. Thirty-five healthy adults completed these movements and their surface marker trajectories were then scaled and processed with OpenSim’s inverse kinematics (IK) and inverse dynamics tools. Knee flexion angle-dependent kinematic constraints defined based on previous bone pin (BP) marker trajectories were then applied to the OpenSim model during IK and these constrained results were then processed with the standard inverse dynamics tool. Significant differences for all hip, knee, and ankle DoF were observed after STA suppression for both the jump lunge and side cut. Using clinically relevant effect size estimates, we conclude that STA contamination had led to misclassifications in hip transverse plane angles, knee frontal and transverse plane angles, medial/lateral and distractive/compressive knee translations, and knee frontal plane moments between the NoBP and the BP IK solutions. Our results have substantial clinical implications since past research has used joint kinematics and kinetics contaminated by STA to identify risk factors for musculoskeletal injuries.  相似文献   

14.
Mechanical tuning of an ankle-foot orthosis (AFO) is important in improving gait in individuals post-stroke. Alignment and resistance are two factors that are tunable in articulated AFOs. The aim of this study was to investigate the effects of changing AFO ankle alignment on lower limb joint kinematics and kinetics with constant dorsiflexion and plantarflexion resistance in individuals post-stroke. Gait analysis was performed on 10 individuals post-stroke under four distinct alignment conditions using an articulated AFO with an ankle joint whose alignment is adjustable in the sagittal plane. Kinematic and kinetic data of lower limb joints were recorded using a Vicon 3-dimensional motion capture system and Bertec split-belt instrumented treadmill. The incremental changes in the alignment of the articulated AFO toward dorsiflexion angles significantly affected ankle and knee joint angles and knee joint moments while walking in individuals post-stroke. No significant differences were found in the hip joint parameters. The alignment of the articulated AFO was suggested to play an important role in improving knee joint kinematics and kinetics in stance through improvement of ankle joint kinematics while walking in individuals post-stroke. Future studies should investigate long-term effects of AFO alignment on gait in the community in individuals post-stroke.  相似文献   

15.
Patello-femoral disorders are often caused by changes of patello-femoral and/or tibio-femoral kinematics. However, until now there has been no quantitative in vivo technique, that is able to obtain 3D kinematics and contact areas of all knee compartments simultaneously on a non-invasive basis. The aim of this study was therefore to develop and apply a technique which allows for determination of 3D kinematics and contact areas of the patello-femoral and tibio-femoral joint during different knee flexion angles and under neuromuscular activation patterns. One knee of each of the 10 healthy volunteers was examined in an open MR system under flexing isometric muscle activity at 30 degrees and 90 degrees. Three-dimensional kinematics and contact areas of the patello-femoral and tibio-femoral joints were analyzed by 3D image postprocessing. The reproducibility of the imaging technique yielded a coefficient of variation of 4.6% for patello-femoral, 4.7% for femoro-tibial displacement and 8.6% for contact areas. During knee flexion (30-90 degrees ), patella tilt (opened to medial) decreased (8.8+/-3.4 degrees vs. 4.6+/-3.1 degrees, p<0.05), while lateral patellar shift increased significantly (1.6+/-2.3mm vs. 3.4+/-3.0mm, p<0.05). Furthermore, a significant posterior translation and external rotation of the femur relative to the tibia was observed. Patello-femoral contact areas increased significantly in size (134+/-60mm(2) vs. 205+/-96 mm(2)) during knee flexion. This technique shows a high reproducibility and provides physiologic in vivo data of 3D kinematics and contact areas of the patello-femoral and the tibio-femoral joint during knee flexion. This allows for advanced in vivo diagnostics, and may help to improve therapy of patello-femoral disorders in the future.  相似文献   

16.
Use of computational models with kinematic boundary conditions to study the knee joint contact behavior for normal and pathologic knee joints depends on an understanding of the impacts of kinematic uncertainty. We studied the sensitivities of tibio-menisco-femoral joint contact behavior to variations in knee kinematics using a finite element model (FEM) with geometry and kinematic boundary conditions derived from sequences of magnetic resonance (MR) images. The MR images were taken before and after axial compression was applied to the knee joint of a healthy subject. A design of experiments approach was used to study the impact of the variation in knee kinematics on the contact outputs. We also explored the feasibility of using supplementary hip images to improve the accuracy of knee kinematics. Variations in knee kinematics (0.25mm in medial-lateral, 0.1mm in anterior-posterior and superior-inferior translations, and 0.1 degrees in flexion-extension and varus-valgus, 0.25 degrees in external-internal rotations) caused large variations in joint contact behavior. When kinematic boundary conditions resulted in close approximations of the model-predicted joint contact force to the applied force, variations in predictions of contact parameters were also reduced. The combination of inferior-superior and medial-lateral translations accounted for over 70% of variations for all the contact parameters examined. The inclusion of hip images in kinematic calculations improved knee kinematics by matching the femoral head position. Our findings demonstrate the importance of improving the accuracy and precision of knee kinematic measurements, especially when utilized as an input for finite element models.  相似文献   

17.
The overall objective of this study was to introduce knee joint power as a potential measure to investigate knee joint stability following total knee arthroplasty (TKA). Specific aims were to investigate whether weakened knee joint stabilizers cause abnormal kinematics and how it influences the knee joint kinetic (i.e., power) in response to perturbation.Patient-specific musculoskeletal models were simulated with experimental gait data from six TKA patients (baseline models). Muscle strength and ligament force parameter were reduced by up to 30% to simulate weak knee joint stabilizers (weak models). Two different muscle recruitment criteria were tested to examine whether altered muscle recruitment pattern can mask the influence of weakened stabilizers on the knee joint kinematics and kinetics. Level-walking knee joint kinematics and kinetics were calculated though force-dependent kinematic and inverse dynamic analyses. Bode analysis was then recruited to estimate the knee joint power in response to a simulated perturbation.Weak models resulted in larger anterior-posterior (A-P) displacement and internal-external (I-E) rotation compared to baseline (I-E: 18.4 ± 8.5 vs. 11.6 ± 5.7 (deg), A-P: 9.7 ± 5.6 vs. 5.5 ± 4.1 (mm)). Changes in muscle recruitment criterion however altered the results such that A-P and I-E were not notably different from baseline models. In response to the simulated perturbation, weak models versus baseline models generated a delayed power response with unbounded magnitudes. Perturbed power behavior of the knee remained unaltered regardless of the muscle recruitment criteria.In conclusion, impairment at the knee joint stabilizers may or may not lead to excessive joint motions but it notably affects the knee joint power in response to a perturbation. Whether perturbed knee joint power is associated with the patient-reported outcome requires further investigation.  相似文献   

18.
IntroductionMusculoskeletal modeling allows insight into the interaction of muscle force and knee joint kinematics that cannot be measured in the laboratory. However, musculoskeletal models of the lower extremity commonly use simplified representations of the knee that may limit analyses of the interaction between muscle forces and joint kinematics. The goal of this research was to demonstrate how muscle forces alter knee kinematics and consequently muscle moment arms and joint torque in a musculoskeletal model of the lower limb that includes a deformable representation of the knee.MethodsTwo musculoskeletal models of the lower limb including specimen-specific articular geometries and ligament deformability at the knee were built in a finite element framework and calibrated to match mean isometric torque data collected from 12 healthy subjects. Muscle moment arms were compared between simulations of passive knee flexion and maximum isometric knee extension and flexion. In addition, isometric torque results were compared with predictions using simplified knee models in which the deformability of the knee was removed and the kinematics at the joint were prescribed for all degrees of freedom.ResultsPeak isometric torque estimated with a deformable knee representation occurred between 45° and 60° in extension, and 45° in flexion. The maximum isometric flexion torques generated by the models with deformable ligaments were 14.6% and 17.9% larger than those generated by the models with prescribed kinematics; by contrast, the maximum isometric extension torques generated by the models were similar. The change in hamstrings moment arms during isometric flexion was greater than that of the quadriceps during isometric extension (a mean RMS difference of 9.8 mm compared to 2.9 mm, respectively).DiscussionThe large changes in the moment arms of the hamstrings, when activated in a model with deformable ligaments, resulted in changes to flexion torque. When simulating human motion, the inclusion of a deformable joint in a multi-scale musculoskeletal finite element model of the lower limb may preserve the realistic interaction of muscle force with knee kinematics and torque.  相似文献   

19.
To understand the mechanical consequences of knee injury requires a detailed analysis of the effect of that injury on joint contact mechanics during activities of daily living. Three-dimensional (3D) knee joint geometric models have been combined with knee joint kinematics to dynamically estimate the location of joint contact during physiological activities—using a weighted center of proximity (WCoP) method. However, the relationship between the estimated WCoP and the actual location of contact has not been defined. The objective of this study was to assess the relationship between knee joint contact location as estimated using the image-based WCoP method, and a directly measured weighted center of contact (WCoC) method during simulated walking. To achieve this goal, we created knee specific models of six human cadaveric knees from magnetic resonance imaging. All knees were then subjected to physiological loads on a knee simulator intended to mimic gait. Knee joint motion was captured using a motion capture system. Knee joint contact stresses were synchronously recorded using a thin electronic sensor throughout gait, and used to compute WCoC for the medial and lateral plateaus of each knee. WCoP was calculated by combining knee kinematics with the MRI-based knee specific model. Both metrics were compared throughout gait using linear regression. The anteroposterior (AP) location of WCoP was significantly correlated with that of WCoC on both tibial plateaus in all specimens (p<0.01, 95% confidence interval of Pearson?s coefficient r>0), but the correlation was not significant in the mediolateral (ML) direction for 4/6 knees (p>0.05). Our study demonstrates that while the location of joint contact obtained from 3D knee joint contact model, using the WCoP method, is significantly correlated with the location of actual contact stresses in the AP direction, that relationship is less certain in the ML direction.  相似文献   

20.
An understanding of the in vivo knee joint kinematics is critical for the further improvement and validation of knee joint models and for the development of better surgical and rehabilitative protocols. Unfortunately, most studies exploring the finite helical axis (FHA) tend to produce excellent qualitative results, but quantitative results are often lacking. Thus, the purpose of this study was to non-invasively and in vivo quantify the tibiofemoral FHA in a relatively large normal population during volitional knee extension using fast-PC MRI, to report the data relative to consistent coordinate systems (making it available for modeling input, experimental comparison and for device design), to determine the variability of the FHA, to investigate the screw home mechanism and to test the hypothesis that knee joint kinematics are independent of gender. Intra- and inter-subject repeatability was excellent. The intra- (inter-) subject repeatability of the FHA orientation in the frontal and axial planes was 1.8% (3.3%) and 3.7% (6.0%) of the average value, respectively. At the beginning of extension, the FHA was directed laterally and slightly superiorly and at the end of extension, it was directed in the lateral-inferior direction, indicative of the screw-home mechanism. The FHA location was not fixed during extension. There was small, but significant differences in all FHA parameters between genders and normalizing positional data relative to epicondylar width helped to reduce this difference. The data obtained in the current study forms an excellent base for future knee joint modeling and clinical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号