首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary The actin-binding protein caldesmon (CaD) exists both in smooth muscle (the heavy isoform, h-CaD) and non-muscle cells (the light isoform, l-CaD). In smooth muscles h-CaD binds to myosin and actin simultaneously and modulates the actomyosin interaction. In non-muscle cells l-CaD binds to actin and stabilizes␣the actin stress fibers; it may also mediate the interaction between actin and non-muscle myosins. Both h- and l-CaD are phosphorylated in vivo upon stimulation. The major phosphorylation sites of h-CaD when activated by phorbol ester are the Erk-specific sites, modification of which is attenuated by the MEK inhibitor PD98059. The same sites in l-CaD are also phosphorylated when cells are stimulated to migrate, whereas in dividing cells l-CaD is phosphorylated more extensively, presumably by cdc2 kinase. Both Erk and cdc2 are members of the MAPK family. Thus it appears that CaD is a downstream effector of the Ras signaling pathways. Significantly, the phosphorylatable serine residues shared by both CaD isoforms are in the C-terminal region that also contains the actin-binding sites. Biochemical and structural studies indicated that phosphorylation of CaD at the Erk sites is accompanied by a conformational change that partially dissociates CaD from actin. Such a structural change in h-CaD exposes the myosin-binding sites on the actin surface and allows actomyosin interactions in smooth muscles. In the case of non-muscle cells, the change in l-CaD weakens the stability of the actin filament and facilitates its disassembly. Indeed, the level of l-CaD modification correlates very well in a reciprocal manner with the level of actin stress fibers. Since both cell migration and cell division require dynamic remodeling of actin cytoskeleton that leads to cell shape changes, phosphorylation of CaD may therefore serve as a plausible means to regulate these processes. Thus CaD not only links the smooth muscle contractility and non-muscle motility, but also provides a common mechanism for the regulation of cell migration and cell proliferation.  相似文献   

3.
Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA, carC, gpaB, gpbA), the endogenous calcium (Ca2+) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca2+ signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1 ± 10.7% and 25.9 ± 2.1% respectively and demonstrate a link between Ca2+/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA/carC cells by 844 ± 136% compared to only 106 ± 6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms.  相似文献   

4.
Caldesmon is believed to be one of the key regulators for actin dynamics and thereby cell polarity, membrane extension, and cell motility. We have shown previously that stress fiber formation and cell movement are severely impaired in the cells expressing human fibroblast caldesmon fragment defective in Ca2+/CaM binding sites. Both Ser458 and Ser489, adjacent to the Ca2+/CaM-binding sites, are phosphorylated by p21-activated kinase (PAK) in vitro. Here we report that Ser458 is phosphorylated in response to cell movement. We substituted Ser458 and Ser489 on C-terminal caldesmon (CaD39) with alanine or glutamic acid to mimic under-phosphorylated (CaD39-PAKA) or constitutively phosphorylated (CaD39-PAKE) caldesmon. In vitro, CaD39-PAKE, but not CaD39-PAKA, fails to inhibit myosin ATPase activity and exhibits reduced binding to Ca2+/CaM. When stably expressed in Chinese Hamster Ovary cells, both CaD39-PAKA and CaD39-PAKE incorporate into stress fibers and localize to the leading edge of the migrating cell. Expression of CaD39-PAKE, but not CaD39-PAKA, fails to protect stress fibers from cytochalasin depolymerization. However, both mutations inhibit cell polarization and lead to defects in membrane extension and cell migration. We conclude that phosphorylation of caldesmon by PAK is a dynamic process required to regulate actin dynamics and membrane protrusions in wound-induced cell migration.  相似文献   

5.
Caldesmon (CaD), a component of microfilaments in all cells and thin filaments in smooth muscle cells, is known to bind to actin, tropomyosin, calmodulin, and myosin and to inhibit actin-activated ATP hydrolysis by smooth muscle myosin. Thus, it is believed to regulate smooth muscle contraction, cell motility and the cytoskeletal structure. Using bladder smooth muscle cell cultures and RNA interference (RNAi) technique, we show that the organization of actin into microfilaments in the cytoskeleton is diminished by siRNA-mediated CaD silencing. CaD silencing significantly decreased the amount of polymerized actin (F-actin), but the expression of actin was not altered. Additionally, we find that CaD is associated with 10 nm intermediate-sized filaments (IF) and in vitro binding assay reveals that it binds to vimentin and desmin proteins. Assembly of vimentin and desmin into IF is also affected by CaD silencing, although their expression is not significantly altered when CaD is silenced. Electronmicroscopic analyses of the siRNA-treated cells showed the presence of myosin filaments and a few surrounding actin filaments, but the distribution of microfilament bundles was sparse. Interestingly, the decrease in CaD expression had no effect on tubulin expression and distribution of microtubules in these cells. These results demonstrate that CaD is necessary for the maintenance of actin microfilaments and intermediate-sized filaments in the cytoskeletal structure. This finding raises the possibility that the cytoskeletal structure in smooth muscle is affected when CaD expression is altered, as in smooth muscle de-differentiation and hypertrophy seen in certain pathological conditions.  相似文献   

6.
The actin-, myosin-, and calmodulin-binding protein caldesmon (CaD) is expressed in two splice isoforms: h-CaD, which is an integral part of the actomyosin domain of smooth muscle cells, and l-CaD, which is widely expressed and is involved in many cellular functions. Despite extensive research for many years, CaD''s in vivo function has remained elusive. To explore the role of CaD in smooth muscle contraction in vivo, we generated a mutant allele that ablates both isoforms. Heterozygous animals were viable and had a normal life span, but homozygous mutants died perinatally, likely because of a persistent umbilical hernia. The herniation was associated with hypoplastic and dysmorphic abdominal wall muscles. We assessed mechanical parameters in isometrically mounted longitudinal strips of E18.5 urinary bladders and in ring preparations from abdominal aorta using wire myography. Ca2+ sensitivity was higher and relaxation rate was slower in Cald1/ compared with Cald1+/+ skinned bladder strips. However, we observed no change in the content and phosphorylation of regulatory proteins of the contractile apparatus and myosin isoforms known to affect these contractile parameters. Intact fibers showed no difference in actin and myosin content, regardless of genotype, although KCl-induced force tended to be lower in homozygous and higher in heterozygous mutants than in WTs. Conversely, in skinned fibers, myosin content and maximal force were significantly lower in Cald1/ than in WTs. In KO abdominal aortas, resting and U46619 elicited force were lower than in WTs. Our results are consistent with the notion that CaD impacts smooth muscle function dually by (1) acting as a molecular brake on contraction and (2) maintaining the structural integrity of the contractile machinery. Most importantly, CaD is essential for resolution of the physiological umbilical hernia and ventral body wall closure.  相似文献   

7.
We sought to elucidate the effects of different concentrations of dietary selenium on calcium ion release, MLCK levels, and muscle contraction in the uterine smooth muscle of rats. The selenium (Se) content of blood and of uterine smooth muscle tissues was detected by fluorescence spectrophotometry. Ca2+ content was measured by atomic absorption spectroscopy. Calmodulin (CaM) and MLCK RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Dietary Se intake increased the Se levels in the blood and in uterine smooth muscle tissues and increased the Ca2+ concentration in uterine smooth muscle tissues. The addition of Se also promoted CaM expression and enhanced MLCK activation in uterine smooth muscle tissues. In conclusion, Ca2+, CaM, and MLCK were regulated by Se in uterine smooth muscle; Se plays a major role in regulating smooth muscle contraction in the uterus.  相似文献   

8.

Key message

This study indicated that Ca 2+ , ROS and actin filaments were involved with CaM in regulating pollen tube growth and providing a potential way for overcoming pear self-incompatibility.

Abstract

Calmodulin (CaM) has been associated with various physiological and developmental processes in plants, including pollen tube growth. In this study, we showed that CaM regulated the pear pollen tube growth in a concentration-dependent bi-phasic response. Using a whole-cell patch-clamp configuration, we showed that apoplastic CaM induced a hyperpolarization-activated calcium ion (Ca2+) current, and anti-CaM largely inhibited this type of Ca2+ current. Moreover, upon anti-CaM treatment, the reactive oxygen species (ROS) concentration decreased and actin filaments depolymerized in the pollen tube. Interestingly, CaM could partially rescue the inhibition of self-incompatible pear pollen tube growth. This phenotype could be mediated by CaM-enhanced pollen plasma membrane Ca2+ current, tip-localized ROS concentration and stabilized actin filaments. These data indicated that Ca2+, ROS and actin filaments were involved with CaM in regulating pollen tube growth and provide a potential way for overcoming pear self-incompatibility.  相似文献   

9.
Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer–binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl’s functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl’s actin binding properties and furthermore promotes Cobl’s previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl’s cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells—a key process in neuronal network formation.  相似文献   

10.
Caldesmon is an actin- and myosin-binding protein found in smooth muscle that inhibits actin activation of myosin ATPase activity. The activity of caldesmon is controlled by phosphorylation and by binding to Ca2+-calmodulin. We investigated the effects of phosphorylation by p21-activated kinase 3 (PAK) and calmodulin on the 22 kDa C-terminal fragment of caldesmon (CaD22). We substituted the major PAK sites, Ser-672 and Ser-702, with either alanine or aspartic acid to mimic nonphosphorylated and constitutively phosphorylated states of caldesmon, respectively. The aspartic acid mutation of CaD22 weakened Ca2+-calmodulin binding but had no effect on inhibition of ATPase activity. Phosphorylation of the aspartic acid mutant with PAK resulted in the slow phosphorylation of Thr-627, Ser-631, Ser-635, and Ser-642. Phosphorylation at these sites weakened Ca2+-calmodulin binding further and reduced the inhibitory activity of CaD22 in the absence of Ca2+-calmodulin. Phosphorylation of these sites of the alanine mutant of CaD22 had no effect on Ca2+-calmodulin binding but did reduce inhibition of ATPase activity. Thus, the region between residues 627 and 642 may contribute to the overall regulation of caldesmon's activity.  相似文献   

11.
Adhesion of tumor cells to endothelial cells is known to be involved in the hematogenous metastasis of cancer, which is regulated by hypoxia. Hypoxia is able to induce a significant increase in free intracellular Ca2+ levels in both tumor cells and endothelial cells. Here, we investigate the regulatory effects of calmodulin (CaM), an intracellular calcium mediator, on tumor cell–endothelial cell adhesion under hypoxic conditions. Hypoxia facilitates HeLa cell–ECV304 endothelial cell adhesion, and results in actin cytoskeleton rearrangement in both endothelial cells and tumor cells. Suppression of CaM activation by CaM inhibitor W-7 disrupts actin cytoskeleton organization and CaM distribution in the cell–cell contact region, and thus inhibits cell–cell adhesion. CaM inhibitor also downregulates hypoxia-induced HIF-1-dependent gene expression. These results suggest that the Ca2+-CaM signaling pathway might be involved in tumor cell-endothelial cell adhesion, and that co-localization of CaM and actin at cell–cell contact regions might be essential for this process under hypoxic stress. W.-G. Shen and W.-X. Peng Contributed to this paper equally  相似文献   

12.
The contractile and enzymatic activities of myosin VI are regulated by calcium binding to associated calmodulin (CaM) light chains. We have used transient phosphorescence anisotropy to monitor the microsecond rotational dynamics of erythrosin-iodoacetamide-labeled actin with strongly bound myosin VI (MVI) and to evaluate the effect of MVI-bound CaM light chain on actin filament dynamics. MVI binding lowers the amplitude but accelerates actin filament microsecond dynamics in a Ca2+- and CaM-dependent manner, as indicated from an increase in the final anisotropy and a decrease in the correlation time of transient phosphorescence anisotropy decays. MVI with bound apo-CaM or Ca2+-CaM weakly affects actin filament microsecond dynamics, relative to other myosins (e.g., muscle myosin II and myosin Va). CaM dissociation from bound MVI damps filament rotational dynamics (i.e., increases the torsional rigidity), such that the perturbation is comparable to that induced by other characterized myosins. Analysis of individual actin filament shape fluctuations imaged by fluorescence microscopy reveals a correlated effect on filament bending mechanics. These data support a model in which Ca2+-dependent CaM binding to the IQ domain of MVI is linked to an allosteric reorganization of the actin binding site(s), which alters the structural dynamics and the mechanical rigidity of actin filaments. Such modulation of filament dynamics may contribute to the Ca2+- and CaM-dependent regulation of myosin VI motility and ATP utilization.  相似文献   

13.
14.
A current popular model to explain phosphorylation of smooth muscle myosin (SMM) by myosin light-chain kinase (MLCK) proposes that MLCK is bound tightly to actin but weakly to SMM. We found that MLCK and calmodulin (CaM) co-purify with unphosphorylated SMM from chicken gizzard, suggesting that they are tightly bound. Although the MLCK:SMM molar ratio in SMM preparations was well below stoichiometric (1:73 ± 9), the ratio was ∼ 23-37% of that in gizzard tissue. Fifteen to 30% of MLCK was associated with CaM at ∼ 1 nM free [Ca2+]. There were two MLCK pools that bound unphosphorylated SMM with Kd ∼ 10 and 0.2 μM and phosphorylated SMM with Kd ∼ 20 and 0.2 μM. Using an in vitro motility assay to measure actin sliding velocities, we showed that the co-purifying MLCK-CaM was activated by Ca2+ and phosphorylation of SMM occurred at a pCa50 of 6.1 and at a Hill coefficient of 0.9. Similar properties were observed from reconstituted MLCK-CaM-SMM. Using motility assays, co-sedimentation assays, and on-coverslip enzyme-linked immunosorbent assays to quantify proteins on the motility assay coverslip, we provide strong evidence that most of the MLCK is bound directly to SMM through the telokin domain and some may also be bound to both SMM and to co-purifying actin through the N-terminal actin-binding domain. These results suggest that this MLCK may play a role in the initiation of contraction.  相似文献   

15.
Ca2+ regulates cell differentiation and morphogenesis in a diversity of organisms and dysregulation of Ca2+ signal transduction pathways leads to many cellular pathologies. In Dictyostelium Ca2+ induces ecmB expression and stalk cell differentiation in vitro. Here we have analyzed the pattern of ecmB expression in intact and bisected slugs and the effect of agents that affect Ca2+ levels or antagonize calmodulin (CaM) on this expression pattern. We have shown that Ca2+ and CaM regulate ecmB expression and pstAB/pstB cell differentiation in vivo. Agents that increase intracellular Ca2+ levels increased ecmB expression and/or pstAB and pstB cell differentiation, while agents that decrease intracellular Ca2+ or antagonize CaM decreased it. In isolated slug tips agents that affect Ca2+ levels and antagonize CaM had differential effect on ecmB expression and cell differentiation in the anterior versus posterior zones. Agents that increase intracellular Ca2+ levels increased the number of ecmB expressing cells in the anterior region of slugs, while agents that decrease intracellular Ca2+ levels or antagonize CaM activity increased the number of ecmB expressing cells in the posterior. We have also demonstrated that agents that affect Ca2+ levels or antagonize CaM affect cells motility and regeneration of shape in isolated slug tips and backs and regeneration of tips in isolated slug backs. To our knowledge, this is the first study detailing the pattern of ecmB expression in regenerating slugs as well as the role of Ca2+ and CaM in the regeneration process and ecmB expression.  相似文献   

16.
We demonstrate here that the transient receptor potential melastatin subfamily channel, TRPM4, controls migration of bone marrow-derived mast cells (BMMCs), triggered by dinitrophenylated human serum albumin (DNP-HSA) or stem cell factor (SCF). Wild-type BMMCs migrate after stimulation with DNP-HSA or SCF whereas both stimuli do not induce migration in BMMCs derived from TRPM4 knockout mice (trpm4?/?). Mast cell migration is a Ca2+-dependent process, and TRPM4 likely controls this process by setting the intracellular Ca2+ level upon cell stimulation. Cell migration depends on filamentous actin (F-actin) rearrangement, since pretreatment with cytochalasin B, an inhibitor of F-actin formation, prevented both DNP-HSA- and SCF-induced migration in wild-type BMMC. Immunocytochemical experiments using fluorescence-conjugated phalloidin demonstrate a reduced level of F-actin formation in DNP-HSA-stimulated BMMCs from trpm4?/? mice. Thus, our results suggest that TRPM4 is critically involved in migration of BMMCs by regulation of Ca2+-dependent actin cytoskeleton rearrangements.  相似文献   

17.
CEACAM1, a homotypic transmembrane receptor with 12 or 72 amino acid cytosolic domain isoforms, is converted from inactive cis-dimers to active trans-dimers by calcium-calmodulin (Ca2+/CaM). Previously, the weak binding of Ca2+/CaM to the human 12 AA cytosolic domain was studied using C-terminal anchored peptides. We now show the binding of 15N labeled Phe-454 cytosolic domain peptides in solution or membrane anchored using NMR demonstrates a significant role for the lipid bilayer. Although binding is increased by the mutation Phe454Ala, this mutation was previously shown to abrogate actin binding. On the other hand, Ca2+/CaM binding is abrogated by phosphorylation of nearby Thr-457, a post-translation modification required for actin binding and subsequent in vitro lumen formation. Binding of Ca2+/CaM to a membrane proximal peptide from the long 72 AA cytosolic domain anchored to lipid nanodiscs was very weak compared to lipid free conditions, suggesting membrane specific effects between the two isoforms. NMR analysis of 15N labeled Ca2+/CaM with unlabeled peptides showed the C-lobe of Ca2+/CaM is involved in peptide interactions, and hydrophobic residues such as Met-109, Val-142 and Met-144 play important roles in binding peptide. This information was incorporated into transmembrane models of CEACAM1 binding to Ca2+/CaM. The lack of Ca2+/CaM binding to phosphorylated Thr-457, a residue we have previously shown to be phosphorylated by CaMK2D, also dependent on Ca2+/CaM, suggests stepwise binding of the cytosolic domain first to Ca2+/CaM and then to actin.  相似文献   

18.
Selenium (Se) is an essential micronutrient affecting various aspects of health. The balance of the Se concentration has an important protective and promoter effect on physiological function in inducing muscular disorders in smooth muscle. Selenoprotein N (SelN) is closely related to Ca2+ release. The present study aimed to determine the effects and mechanism of action of dietary Se on uterine smooth muscle contraction via SelN using a mouse model. Quantitative polymerase chain reaction (qPCR) analysis was performed to detect mRNA levels. Western blotting was performed to detect protein levels. The results of the immunohistochemical analysis showed that Se had an effect on the uterine smooth muscle. The Se-supplement increased the release of Ca2+, Ca2+-calmodulin (CaM) expression, myosin light chain kinase (MLCK) expression, and myosin light chain (MLC) phosphorylation but did not affect ROCK and RhoA in uterine smooth muscle. Furthermore, the lack of Se showed an opposite impact. The effects of Se regulation were closely related to SelN. The interference of mouse SelN was performed on the uterine smooth muscle cell. Additionally, the results displayed the regulation of Se on the release of Ca2+, CaM expression, MLCK expression, and MLC phosphorylation were significant inhibited, and there was no effect on ROCK and RhoA. In conclusion, Se played an important role in regulating the process of contraction in uterine smooth muscle with SelN.  相似文献   

19.
Before successful fertilization can occur, oocytes must undergo meiotic maturation. In starfish, this can be achieved in vitro by applying 1-methyladenine (1-MA). The immediate response to 1-MA is the fast Ca2+ release in the cell cortex. Here, we show that this Ca2+ wave always initiates in the vegetal hemisphere and propagates through the cortex, which is the space immediately under the plasma membrane. We have observed that alteration of the cortical actin cytoskeleton by latrunculin-A and jasplakinolide can potently affect the Ca2+ waves triggered by 1-MA. This indicates that the cortical actin cytoskeleton modulates Ca2+ release during meiotic maturation. The Ca2+ wave was inhibited by the classical antagonists of the InsP3-linked Ca2+ signaling pathway, U73122 and heparin. To our surprise, however, these two inhibitors induced remarkable actin hyper-polymerization in the cell cortex, suggesting that their inhibitory effect on Ca2+ release may be attributed to the perturbation of the cortical actin cytoskeleton. In post-meiotic eggs, U73122 and jasplakinolide blocked the elevation of the vitelline layer by uncaged InsP3, despite the massive release of Ca2+, implying that exocytosis of the cortical granules requires not only a Ca2+ rise, but also regulation of the cortical actin cytoskeleton. Our results suggest that the cortical actin cytoskeleton of starfish oocytes plays critical roles both in generating Ca2+ signals and in regulating cortical granule exocytosis.  相似文献   

20.
The actin- and myosin-binding protein, caldesmon (CaD) is an essential component of the cytoskeleton in smooth muscle and non-muscle cells and is involved in the regulation of cell contractility, division, and assembly of actin filaments. CaD is abundantly present in endothelial cells (EC); however, the contribution of CaD in endothelial cytoskeletal arrangement is unclear. To examine this contribution, we generated expression constructs of l-CaD cloned from bovine endothelium. Wild-type CaD (WT-CaD) and truncated mutants lacking either the N-terminal myosin-binding site or the C-terminal domain 4b (containing actin- and calmodulin-binding sites) were transfected into human pulmonary artery EC. Cell fractionation experiments and an actin overlay assay demonstrated that deleting domain 4b, but not the N-terminal myosin-binding site, resulted in decreased affinity to both the detergent-insoluble cytoskeleton and soluble actin. Recombinant WT-CaD co-localized with acto-myosin filaments in vivo, but neither of CaD mutants did. Thus both domain 4b and the myosin-binding site are essential for proper localization of CaD in EC. Overexpression of WT-CaD led to cell rounding and formation of a thick peripheral subcortical actin rim in quiescent EC, which correlated with decreased cellular migration. Pharmacological inhibition of p38 MAPK, but not ERK MAPK, caused disassembly of this peripheral actin rim in CaD-transfected cells and decreased CaD phosphorylation at Ser531 (Ser789 in human h-CaD). These results suggest that CaD is critically involved in the regulation of the actin cytoskeleton and migration in EC, and that p38 MAPK-mediated CaD phosphorylation may be involved in endothelial cytoskeletal remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号