首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The insulin-like growth factor-binding protein 4 (IGFBP-4), the most abundant IGF-binding protein produced by rodent smooth muscle cells (SMC), is degraded by specific protease(s) potentially releasing IGF-I for local bioactivity. IGFBP-4 protease(s) recognizes basic residues within the midregion of the molecule. We constructed a mutant IGFBP-4 with the cleavage domain substitution 119-KHMAKVRDRSKMK-133 to 119-AAMAAVADASAMA-133. Myc-tagged native and IGFBP-4.7A retained equivalent IGF-I binding affinity. Whereas native IGFBP-4 was cleaved by SMC-conditioned medium, IGFBP-4.7A was completely resistant to proteolysis. To explore the function of the protease-resistant IGFBP-4 in vivo, expression of the mutant and native proteins was targeted to SMC of transgenic mice by means of a smooth muscle alpha-actin promoter. Transgene expression was confined to SMC-rich tissues in all lines. Bladder and aortic immunoreactive IGFBP-4/transgene mRNA ratios in SMP8-BP4.7A mice were increased by 2- to 4-fold relative to SMP8-BP4 mice, indicating that the IGFBP-4.7A protein was stabilized in vivo. SMP8-BP4.7A mice had lower aortic, bladder, and stomach weight and intestinal length relative to SMP8-BP4 counterparts matched for protein expression by Western blotting. Thus, IGFBP-4.7A results in greater growth inhibition than equivalent levels of native IGFBP-4 in vivo, demonstrating a role for IGFBP-4 proteolysis in the regulation of IGF-I action.  相似文献   

2.
3.
Caldesmon (CaD) is an actin-binding protein that is capable of inhibiting the actomyosin ATPase activity in vitro. CaD has a single gene that is alternatively spliced to generate the smooth muscle-specific form, h-CaD, and a shorter isoform, l-CaD, that is present only in non-muscle cells. The difference between h- and l-CaD is a highly charged repeating sequence, corresponding to a 35 nm-long single helical region that separates the N-terminal domain from the C-terminal domain of h-CaD. To test whether such an elongated h-CaD is essential for smooth muscles to function properly, we have specifically abrogated its expression in the mouse by targeting h-CaD without affecting the expression of l-CaD. After genotyping, we have obtained homozygous knockout mice that indeed lack h-CaD, but nevertheless express varying amounts of l-CaD in a tissue-dependent fashion. The contractility of smooth muscles isolated from the knockout animals is currently under investigation.  相似文献   

4.
5.
Genetically encoded signaling proteins provide remarkable opportunities to design and target the expression of molecules that can be used to report critical cellular events in vivo, thereby markedly extending the scope and physiological relevance of studies of cell function. Here we report the development of a transgenic mouse expressing such a reporter and its use to examine postsynaptic signaling in smooth muscle. The circularly permutated, Ca2+-sensing molecule G-CaMP (Nakai, J., Ohkura, M., and Imoto, K. (2001) Nat. Biotechnol. 19, 137-141) was expressed in vascular and non-vascular smooth muscle and functioned as a lineage-specific intracellular Ca2+ reporter. Detrusor tissue from these mice was used to identify two separate types of postsynaptic Ca2+ signals, mediated by distinct neurotransmitters. Intrinsic nerve stimulation evoked rapid, whole-cell Ca2+ transients, or "Ca2+ flashes," and slowly propagating Ca2+ waves. We show that Ca2+ flashes occur through P2X receptor stimulation and ryanodine receptor-mediated Ca2+ release, whereas Ca2+ waves arise from muscarinic receptor stimulation and inositol trisphosphate-mediated Ca2+ release. The distinct ionotropic and metabotropic postsynaptic Ca2+ signals are related at the level of Ca2+ release. Importantly, individual myocytes are capable of both postsynaptic responses, and a transition between Ca2+ -induced Ca2+ release and inositol trisphosphate waves occurs at higher synaptic inputs. Ca2+ signaling mice should provide significant advantages in the study of processive biological signaling.  相似文献   

6.
Phenotypic modulation of smooth muscle cells (SMC) involves dramatic changes in expression and organization of contractile and cytoskeletal proteins, but little is known of how this process is regulated. The present study used a cell culture model to investigate the possible involvement of RhoA, a known regulator of the actin cytoskeleton. In rabbit aortic SMC seeded into primary culture at moderate density, Rho activation was high at two functionally distinct time-points, first as cells modulated to the "synthetic" phenotype, and again upon confluence and return to the "contractile" phenotype. Rho expression increased with time, such that maximal expression occurred upon return to the contractile state. Transient transfection of synthetic state cells with constitutively active RhoA (Val14RhoA) caused a reduction in cell size and reorganization of cytoskeletal proteins to resemble that of the contractile phenotype. Actin and myosin filaments were tightly packed and highly organised while vimentin localised to the perinuclear region; focal adhesions were enlarged and concentrated at the cell periphery. Conversely, inhibition of endogenous Rho by C3 exoenzyme resulted in complete loss of contractile filaments without affecting vimentin distribution; focal adhesions were reduced in size and number. Treatment of synthetic state SMC with known regulators of SMC phenotype, heparin and thrombin, caused a modest increase in Rho activation. Long-term confluence and serum deprivation induced cells to return to a more contractile phenotype and this was augmented by heparin and thrombin. The results implicate RhoA for a role in regulating SMC phenotype and further show that activation of Rho by heparin and thrombin correlates with the ability of these factors to promote the contractile phenotype.  相似文献   

7.
To generate temporally-controlled targeted somatic mutations selectively and efficiently in smooth muscles, we have established a transgenic SMA-Cre-ER(T2) mouse line in which the expression of the Tamoxifen-dependent Cre-ER(T2) recombinase is under the control of a large genomic DNA segment of the mouse smooth muscle alpha actin (SMA) gene, contained in a Bacterial artificial chromosome (Bac). In this transgenic mouse line, Cre-ER(T2)-mediated recombination of LoxP-flanked target DNA is strictly Tamoxifen-dependent, and efficient in both vascular and visceral smooth muscle cells. Moreover, with the exception of few cardiomyocytes, LoxP-flanked DNA excision is restricted to smooth muscle cells. Thus, SMA-Cre-ER(T2) mice should be of great value to analyze gene function in smooth muscles, and to establish new animal models of human smooth muscle disorders.  相似文献   

8.
Alpha-Smooth muscle actin is one of the molecular markers for a phenotype of vascular smooth muscle cells, because the actin is a major isoform expressed in vascular smooth muscle cells and its expression is upregulated during differentiation. Here, we first demonstrate that the phenotype-dependent expression of this actin in visceral smooth muscles is quite opposite to that in vascular smooth muscles. This actin isoform is not expressed in adult chicken visceral smooth muscles including gizzard, trachea, and intestine except for the inner layer of intestinal muscle layers, whereas its expression is clearly detected in these visceral smooth muscles at early stages of the embryo (10-day-old embryo) and is developmentally downregulated. In cultured gizzard smooth muscle cells maintaining a differentiated phenotype, alpha-smooth muscle actin is not detected while its expression dramatically increases during serum-induced dedifferentiation. Promoter analysis reveals that a sequence (-238 to -219) in the promoter region of this actin gene acts as a novel negative cis-element. In conclusion, the phenotype-dependent expression of alpha-smooth muscle actin would be regulated by the sum of the cooperative contributions of the negative element and well-characterized positive elements, purine-rich motif, and CArG boxes and their respective transacting factors.  相似文献   

9.
10.
11.
12.
13.
Myostatin is a well-known negative regulator of skeletal muscle growth. Inhibition of myostatin activity results in increased muscle mass. Myostatin propeptide, as a myostatin antagonist, could be applied to promote meat production in livestock such as pigs. In this study, we generated a transgenic mouse model expressing porcine myostatin propeptide under the control of muscle-specific regulatory elements. The mean body weight of transgenic mice from a line expressing the highest level of porcine myostatin propeptide was increased by 5.4 % (P = 0.023) and 3.2 % (P = 0.031) in males and females, respectively, at 8 weeks of age. Weight of carcass, fore limb and hind limb was respectively increased by 6.0 % (P = 0.038), 9.0 % (P = 0.014), 8.7 % (P = 0.036) in transgenic male mice, compared to wild-type male controls at the age of 9 weeks. Similarly, carcass, fore limb and hind limb of transgenic female mice was 11.4 % (P = 0.002), 14.5 % (P = 0.006) and 14.5 % (P = 0.03) respectively heavier than that of wild-type female mice. The mean cross-section area of muscle fiber was increased by 17 % (P = 0.002) in transgenic mice, in comparison with wild-type controls. These results demonstrated that porcine myostatin propeptide is effective in enhancement of muscle growth. The present study provided useful information for future study on generation of transgenic pigs overexpressing porcine myostatin propeptide for improvement of muscle mass.  相似文献   

14.
The efficient expression of exogenous prion protein (PrP) molecules in mouse neuroblastoma cells that are chronically infected with murine scrapie prions (ScN2a cells; Butler, D.A., et al., 1988, J. Virol. 62, 1558-1564) and in transgenic mice is described. This technology allows investigation of the PrP molecule for structural regions involved in determining species specificity, as well as ablation experiments designed to address the functionality of particular regions of the PrP molecule. Previous reports demonstrated that the PrP gene specifies the host range for susceptibility of transgenic animals to prions (Scott, M., et al., 1989, Cell 59, 847-857; Prusiner, S.B., et al., 1990, Cell 63, 673-686). Consistent with these results, we showed that Syrian hamster (SHa) PrP is ineligible for efficient conversion to PrPSc in ScN2a cells. By constructing a series of chimeric mouse (Mo)/SHaPrP genes, we developed an epitopically tagged functional variant of the MoPrP gene, which can efficiently form protease-resistant PrP molecules upon expression in ScN2a cells. The presence of a defined epitope for an SHa-specific monoclonal antibody allows the products of this chimeric gene to be discriminated from endogenous MoPrP and creates a useful reagent for exploring structure/function relationships via targeted mutagenesis. In addition, we developed a transgenic mouse expression vector by manipulation of an SHaPrP cosmid clone. This vector permits the efficient expression of foreign PrP genes in the brains of transgenic animals, enabling pathological consequences of in vitro mutagenesis to be studied.  相似文献   

15.
CCR3 expression and function in asthmatic airway smooth muscle cells   总被引:4,自引:0,他引:4  
Asthma is characterized by an increase in airway smooth muscle mass and a decreased distance between the smooth muscle layer and the epithelium. Furthermore, there is evidence to indicate that airway smooth muscle cells (ASMC) express a wide variety of receptors involved in the immune response. The aims of this study were to examine the expression of CCR3 on ASMC, to compare this expression between asthmatic and nonasthmatic subjects, and to determine the implications of CCR3 expression in the migration of ASMC. We first demonstrated that ASMC constitutively express CCR3 at both mRNA and protein levels. Interestingly, TNF-alpha increases ASMC surface expression of CCR3 from 33 to 74%. Furthermore, using FACS analysis, we found that ASMC CCR3 is expressed to a greater degree in asthmatic vs control subjects (95 vs 75%). Functionality of the receptor was demonstrated by calcium assay; the addition of CCR3 ligand eotaxin to ASMC resulted in an increase in intracellular calcium production. Interestingly, ASMC was seen to demonstrate a positive chemotactic response to eotaxin. Indeed, ASMC significantly migrated toward 100 ng/ml eotaxin (2.2-fold increase, compared with control). In conclusion, the expression of CCR3 by ASMC is increased in asthmatics, and our data show that a CCR3 ligand such as eotaxin induces migration of ASMC in vitro. These results may suggest that eotaxin could be involved in the increased smooth muscle mass observed in asthmatics through the activation of CCR3.  相似文献   

16.
17.
Cultured smooth muscle cells (SMC) undergo induction of smooth muscle (SM) alpha actin at confluency. Since confluent cells exhibit contact inhibition of growth, this finding suggests that induction of SM alpha actin may be associated with cell cycle withdrawal. This issue was further examined in the present study using fluorescence-activated cell sorting of SMC undergoing induction at confluency and by examination of the effects of FBS and platelet-derived growth factor (PDGF) on SM alpha actin expression in postconfluent SMC cultures that had already undergone induction. Cell sorting was based on DNA content or differential incorporation of bromodeoxyuridine (Budr). The fractional synthesis of SM alpha actin in confluent cells was increased two- to threefold compared with subconfluent log phase cells, but no differences were observed between confluent cycling (Budr+) and noncycling (Budr-) cells. In cultures not exposed to Budr, confluent cycling S + G2 cells exhibited similar induction. These data indicate that cell cycle withdrawal is not a prerequisite for the induction of SM alpha actin synthesis in SMC at confluency. Growth stimulation of postconfluent cultures with either FBS or PDGF resulted in marked repression of SM alpha actin synthesis but the level of repression was not directly related to entry into S phase in that PDGF was a more potent repressor of SM alpha actin synthesis than was FBS despite a lesser mitogenic effect. This differential effect of FBS versus PDGF did not appear to be due to transforming growth factor-beta present in FBS since addition of transforming growth factor-beta had no effect on PDGF-induced repression. Likewise, FBS (0.1-10.0%) failed to inhibit PDGF-induced repression. Taken together these data demonstrate that factors other than replicative frequency govern differentiation of cultured SMC and suggest that an important function of potent growth factors such as PDGF may be the repression of muscle-specific characteristics.  相似文献   

18.
Developmental origin of smooth muscle cells in the descending aorta in mice   总被引:1,自引:0,他引:1  
Aortic smooth muscle cells (SMCs) have been proposed to derive from lateral plate mesoderm. It has further been suggested that induction of SMC differentiation is confined to the ventral side of the aorta, and that SMCs later migrate to the dorsal side. In this study, we investigate the origin of SMCs in the descending aorta using recombination-based lineage tracing in mice. Hoxb6-cre transgenic mice were crossed with Rosa 26 reporter mice to track cells of lateral plate mesoderm origin. The contribution of lateral plate mesoderm to SMCs in the descending aorta was determined at different stages of development. SMC differentiation was induced in lateral plate mesoderm-derived cells on the ventral side of the aorta at embryonic day (E) 9.0-9.5, as indicated by expression of the SMC-specific reporter gene SM22alpha-lacZ. There was, however, no migration of SMCs from the ventral to the dorsal side of the vessel. Moreover, the lateral plate mesoderm-derived cells in the ventral wall of the aorta were replaced by somite-derived cells at E10.5, as indicated by reporter gene expression in Meox1-cre/Rosa 26 double transgenic mice. Examination of reporter gene expression in adult aortas from Hoxb6-cre/Rosa 26 and Meox1-cre/Rosa 26 double transgenic mice suggested that all SMCs in the adult descending aorta derive from the somites, whereas no contribution was recorded from lateral plate mesoderm.  相似文献   

19.
20.
Intestinal mucosal cells and invading leukocytes produce inappropriate levels of cytokines and chemokines in human colitis. However, smooth muscle cells of the airway and vasculature also synthesize cytokines and chemokines. To determine whether human colonic myocytes can synthesize proinflammatory mediators, strips of circular smooth muscle and smooth muscle cells were isolated from human colon. Myocytes and muscle strips were stimulated with 10 ng/ml of IL-1beta, TNF-alpha, and IFN-gamma, respectively. Expression of mRNA for IL-1beta, IL-6, IL-8, and cyclooxygenase-2 (COX-2) was induced within 2 h and continued to increase for 8-12 h. Regulated on activation, normal T cell-expressed and -secreted (RANTES) mRNA expression was slower, appearing at 8 h and increasing linearly through 20 h. Expression of all five mRNAs was inhibited by 0.1 microM MG-132, a proteosome inhibitor that blocks NF-kappaB activation. Expression of IL-1beta, IL-6, IL-8, and COX-2 mRNA was reduced by 30 microM PP1, an Src family tyrosine kinase inhibitor, and by 25 microM SB-203580, a p38 MAPK inhibitor. MAPK/extracellular regulated kinase-1 inhibitor PD-98059 (25 microM) was much less effective. In conclusion, human colonic smooth muscle cells can synthesize and secrete interleukins (IL-1beta and IL-6) and chemokines (IL-8 and RANTES) and upregulate expression of COX-2. Regulation of cytokine, chemokine, and COX-2 mRNA depends on multiple signaling pathways, including Src-family kinases, extracellular regulated kinase, p38 MAPKs, and NF-kappaB. SB-203580 was a consistent, efficacious inhibitor of inflammatory gene expression, suggesting an important role of p38 MAPK in synthetic functions of human colonic smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号