首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

2.
In most aquatic ecosystems, fishes are hosts to parasites and, sometimes, these parasites can affect fish biology. Some of the most dramatic cases occur when fishes are intermediate hosts for larval parasites. For example, fishes in southern California estuaries are host to many parasites. The most common of these parasites, Euhaplorchis californiensis, infects the brain of the killifish Fundulus parvipinnis and alters its behaviour, making the fish 10–30 times more susceptible to predation by the birds that serve as its definitive host. Parasites like E. californiensis are embedded in food webs because they require trophic transmission. In the Carpinteria Salt Marsh estuarine food web, parasites dominate the links and comprise substantial amount of biomass. Adding parasites to food webs alters important network statistics such as connectance and nestedness. Furthermore, some free‐living stages of parasites are food items for free‐living species. For instance, fishes feed on trematode cercariae. Being embedded in food webs makes parasites sensitive to changes in the environment. In particular, fishing and environmental disturbance, by reducing fish populations, may reduce parasite populations. Indirect evidence suggests a decrease in parasites in commercially fished species over the past three decades. In addition, environmental degradation can affect fish parasites. For these reasons, parasites in fishes may serve as indicators of environmental impacts.  相似文献   

3.
Parasites were observed in medium- and small-sized fish taken from the discards of a commercial shrimper during seven different cruises in the tidal channels of the North Frisian Wadden Sea (Süderaue, North Sea) from April to September 1991. In total, 442 fish comprising four species (Sprattus sprattus, Hyperoplus lanceolatus, Ammodytes tobianus, Pomatoschistus minutus) were investigated. The parasite fauna consisted of 22 species. The parasite community structure of the 4 hosts was compared. The diet of the hosts seemed to be the main factor determining the structure of the parasite community. Other factors could not be assessed. Eight species of parasites occurred as larval stages. This indicated that fish were intermediate or paratenic hosts in their life cycle. The nematodeHysterothylacium sp. (Anisakidae) and the digeneanCryptocotyle lingua (Heterophyidea) were the dominant parasites, reaching their highest prevalence and density in sprat and sand eel. Sprat and sand eel play a very important role in parasite transmission to predacious fish and seabirds.  相似文献   

4.
Fish serve as intermediate hosts for a number of larval parasites that have the potential of maturing in marine mammals such as Steller sea lions (Eumetopias jubatus). We examined the prevalence of parasites from 229 fish collected between March and July 2002 near two islands used by Steller sea lions in Southeast Alaska and island habitats in the Aleutian Islands. Sea lion populations have remained steady in Southeast Alaska but have been declining over the last 30 yr in the Aleutian Islands. Even though the fish samples near the Southeast Alaska haul-outs were composed of numerous small species of fish and the Aleutian Islands catch was dominated by juveniles of commercially harvested species, the parasite fauna was similar at all locations. Eleven of the 20 parasite taxa identified were in their larval stage in the fish hosts, several of which have been described from mammalian final hosts. Four species of parasite were more prevalent in Southeast Alaska fish samples, and seven parasite species, including several larval forms capable of infecting marine mammals, were more prevalent in fish from the Aleutian Islands. Nevertheless, parasites available to Steller sea lions from common fish prey are not likely to be a major factor in the decline of this marine mammal species.  相似文献   

5.
Fish parasites have been repeatedly reported to be a major threat to the developing industry of finfish mariculture in Indonesia, due to severe parasite and disease outbreaks. The aim of this study was to identify the metazoan parasite fauna and trichodinid ciliates that infect Lates calcarifer in a representative mariculture farm in Indonesia. Examined were 105 L. calcarifer (seabass) for the metazoan parasite fauna and trichodinid ciliates. Thirty‐five specimens each from the net cages of the National Sea Farming Development Centre (Balai Budidaya Laut, BBL) in Lampung Bay, South Sumatra, Indonesia were investigated in three consecutive seasons (two dry and one rainy season from 2002 to 2003). Nineteen parasite species were identified; all fish specimens were infected with two to 10 parasite species, demonstrating a species‐rich parasite fauna. Protozoans (1 species), myxozoans (1), digeneans (3), monogeneans (5), cestodes (3), nematodes (5) and acanthocephalans (1) were found, including 11 new host records in cultured L. calcarifer from Indonesia. Larval and adult parasite stages were isolated, demonstrating that this fish species, although kept inside the net cages, still functions as an intermediate and final host for marine fish parasites. During all seasons, the six detected monoxenous (single host life cycle) parasite species showed a higher prevalence than the 13 heteroxenous (multiple hosts) species. Most abundant were the fish pathogenic monogeneans Pseudorhabdosynochus epinepheli, Pseudorhabdosynochus lantauensis, Benedenia epinepheli and Neobenedenia melleni with a high prevalence. Most heteroxenous parasites (Digenea, Cestoda, Nematoda and Acanthocephala) occurred with a low prevalence below 26%, caused by the specific culture conditions. Diversity of the heteroxenous parasites was higher in the dry seasons than in the rainy season. Though some seasonality could be observed for the fish pathogenic monogeneans, severe disease outbreaks of these ectoparasites cannot be excluded in either the dry or rainy season.  相似文献   

6.
Cymothoid fish parasites settle on hosts in ways that may impact fish health and energetics. High abundances of Artystone minima observed in Nannostomus beckfordi from the Jeju River in eastern Amazonia were investigated to answer the following questions: (a) What factors are associated with the high prevalence at this locality?; (b) Is high abundance associated with co‐infestation of alternative hosts?; and (c) Is parasite presence associated with host species growth and/or reproduction? Fish assemblages were sampled quarterly (August 2017–May 2018) from five habitats along with environmental data. Parasitic indices were calculated, and parasite presence used to evaluate differences in growth of hosts using analysis of covariance considering host sex and sampling season (wet vs. dry). Parasites were only abundant in one of the habitats, a large, shallow backwater bay with macrophytes. Abiotic environmental factors (flow and depth) likely impact parasite transmission and are, therefore, particularly important in producing these local patterns. Two secondary hosts, Hyphessobrycon cf. rosaceus and Moenkhausia collettii, were found in the wet season. Based on host biology compared to other fish in the habitat, parasite infestation is inferred to be depth associated and long‐term infestation is apparently limited in alternative hosts. Parasite presence was significantly associated with reduced weight (standardized for length) of female Nannostomus beckfordi in the wet season. Furthermore, ovaries of non‐parasitized females from the wet season presented a range of maturation stages, while parasitized females were all immature, indicating a significant association of parasites with host reproductive capacity. Abstract in Portuguese is available with online material  相似文献   

7.
Fifty specimens of Notothenia coriiceps caught in Potter Cove, King George Island, were examined for ecto- and endoparasites. Of the 22 parasite species found, 18 were helminths, 2 were hirudineans and 2 were crustaceans. The isopod Aega antarctica and an unidentified hirudinean are reported for the first time from this fish host. Dominant parasites were the adults of Aspersentis megarhynchus, the invasive stage of Corynosoma spp. (cystacanth) and the adults of Macvicaria pennelli, with respective prevalences of infestation of 94, 76 and 74%. The preferred sites of infestation were the pylorus and intestine, where five different larval (nematodes and cestodes) and eight adult (digeneans and acanthocephalans) parasite species were found. No adult nematodes and cestodes were found and no parasites could be isolated from the musculature. The results of the present study are related to previous findings on the parasite fauna of N. coriiceps. The comparison implies a high parasite diversity in this benthic Antarctic fish species. Most parasites found appear to have a wide range of distribution within Antarctic waters together with a low host specificity. Besides its role as final host for several species of trematodes and acanthocephalans, N. coriiceps serves as transmitter of parasite larvae to piscivorous birds and seals. It is concluded that the parasite fauna in Antarctic fish species provides important insights into the different habitat use and trophic relationship of their fish hosts. Received: 11 September 1997 / Accepted: 12 January 1998  相似文献   

8.
Henriksen  Eirik H.  Smalås  Aslak  Strøm  John F.  Knudsen  Rune 《Hydrobiologia》2019,840(1):261-270

Trophically transmitted parasites are known to impair fish growth in experimental studies, but this is not well documented in natural populations. For Arctic charr [Salvelinus alpinus (L.)], individual growth is positively correlated with food consumption. However, increased food consumption will increase the exposure to trophically transmitted parasites. Using a correlative approach, we explore the association between parasite abundance and the individual growth of Arctic charr from five lakes within the same watercourse. The studied parasite species differ in their life cycles and cost to the host. We predicted a positive association between parasite abundance and fish growth for parasites of low pathogenicity reflecting high consumption rates, and a negative association at higher parasite abundances for more costly parasites. We found no direct negative associations between parasite abundance and fish growth. The relationship between parasite abundance and growth was linearly positive for the low costly Crepidostomum sp. and concave for the more costly Eubothrium salvelini. In natural fish populations, the negative effects of parasites on fish growth might be outweighed by the energy assimilated from feeding on the intermediate host. However, experimental studies with varying food consumption regimes are needed to determine the mechanisms underlying our observations.

  相似文献   

9.
Tapeworms of the genus Paracaryophyllaeus Kulakovskaya, 1961 (Cestoda: Caryophyllidea) are specific parasites of loaches (Cypriniformes: Cobitoidea) and occur almost exclusively in the Palaearctic region. The only exception and example of vicariance over the borders of two zoogeographical regions is Paracaryophyllaeus lepidocephali (Kundu, 1985), an insufficiently known species described from the Indomalayan region, with uncertain generic allocation. In the present paper, the species is redescribed based on new material collected from the type host, Lepidocephalichthys guntea, in West Bengal, India. Molecular data reveal this species as a member of Paracaryophyllaeus, within which it is the most closely related to P. cf. gotoi from Misgurnus anguillicaudatus in China and Japan on the basis of large subunit of ribosomal nuclear DNA (28S rDNA). Generic position of P. lepidocephali examined herein is also confirmed by morphology including cross sections, in particular, by a small, cylindrical body, medullary testes with testicular fields crossing the anterior margin of the cirrus sac, medullary vitelline follicles, with some follicles paramuscular, a shallow common genital atrium, short vagina and uterus not extending anteriorly beyond the cirrus sac. It differs from all Palaearctic congeners but Paracaryophyllaeus vladkae Scholz, Oros and Aydogdu, 2014 by the testicular field crossing the anterior margin of the cirrus sac. It differs from P. vladkae by more anterior position of the first vitelline follicles compared to the first testes. This species is a unique example of a fish tapeworm crossing the borders of the Palaearctic and Indomalayan zoogeographical regions.  相似文献   

10.
Host specialization is an important ecological characteristic of parasitic species. The identification of the parasitic strategy of the genus Stylops (Strepsiptera; Stylopidae) is, however, ambiguous. According to the number of recognized species based on existing taxonomy, highly specialized and supergeneralistic species exist in this genus. Our research aims to clarify the concept of host specialization in the genus Stylops, in which all of the members are parasites of Andrena bees. Based on the phylogenetic analysis of the parasites (mostly females) and the mapping of hosts onto the phylogenetic tree, we tested three hypotheses of host specialization: (1) each species of the genus Stylops is associated with a single host species; (2) Stylops species are specialized to a group of closely related hosts; and (3) a single Stylops species is a generalist, parasitizing all host Andrena species in this particular region. Our evidence clearly shows a close relationship between the parasite and the host: one species of Stylops attacks one or a few host species of Andrena bees, usually from a single subgenus. Moreover, a moderate generalistic strategy is also likely in a few Stylops species. According to our results, the species diversity of the strepsipteran parasites of bees must be reconsidered. A single European species of Stylops should be divided into a higher number of valid species. © 2015 The Linnean Society of London  相似文献   

11.
A total of nine Antarctic fish species belonging to five families were examined for their endohelminth parasite fauna. The fishes Parachaenichthys charcoti (Bathydraconidae), Chaenocephalus aceratus (Channichtyidae), Paradiplospinus gracilis (Gempylidae), Muraenolepis microps (Muraenolepididae), Gobionotothen gibberifrons, Lepidonotothen larseni, L. nudifrons, L. squamifrons, and Trematomus eulepidopus (Nototheniidae) were caught between 80 and 608 m trawling depth off the Antarctic Peninsula (Elephant Island, King George Island) in 1996. Nineteen different parasites species comprising five Digenea, two Cestoda, four Nematoda, and eight Acanthocephala were found. Pseudophyllidean cestodes, the nematodes Contracaecum radiatum and C. osculatum as well as the acanthocephalan Corynosoma bullosum were the most common, infesting eight of the fish species studied with prevalences reaching 100%. Pseudoterranova decipiens s.l. was the only parasite that was isolated from all studied fish species; however, at a lower intensity. The observed parasite host specificity was low, and the species richness in a single fish ranged from one to eleven in a C. aceratus. This icefish and the moray cod M. microps were the most heavily infested fish, harbouring many adult and larval parasitic stages. The benthodemersal P. gracilis had only two larval parasite species, while the nototheniids had very similar parasite communities, harbouring a total of 8–14 species. Larval mammalian parasites were found to utilize fish, especially the nototheniids and channichthyids, as a common transmission route into their final hosts. The fish parasites parallel explored different benthic host systems to reach the most suitable host. In contrast to the coast and continental shelf, the meso/bathypelagiac zone appears to be species poor and is inhabited by few larval forms. The fish parasite fauna off the South Shetland Islands can be characterized by generalistic parasites that distribute within Antarctic waters according to the feeding ecology and depth range of their teleost hosts, not only horizontally but also extending vertically into the deep sea.  相似文献   

12.
The study of host–parasite coevolution is one of the cornerstones of evolutionary biology. The majority of fish ectoparasites belonging to the genus Dactylogyrus (Monogenea) exhibit a high degree of host specificity. Therefore, it is expected that their evolutionary history is primarily linked with the evolutionary history of their cyprinoid fish hosts and the historical formation of the landmasses. In the present study, we used a cophylogenetic approach to investigate coevolutionary relationships between endemic Cyprinoidea (Cyprinidae and Leuciscidae) from selected regions in southern Europe and their respective Dactylogyrus species. A total of 49 Dactylogyrus species including endemic and non-endemic species were collected from 62 endemic cyprinoid species in the Balkan and Apennine Peninsulas. However, 21 morphologically identified Dactylogyrus species exhibited different genetic variants (ranging from 2 to 28 variants per species) and some of them were recognized as cryptic species on the basis of phylogenetic reconstruction. Phylogenetic analyses revealed several lineages of endemic and non-endemic Dactylogyrus species reflecting some morphological similarities or host affinities. Using distance-based and event-based cophylogenetic methods, we found a significant coevolutionary signal between the phylogenies of parasites and their hosts. In particular, statistically significant links were revealed between Dactylogyrus species of Barbini (Cyprinidae) and their hosts belonging to the genera Aulopyge, Barbus and Luciobarbus. Additionally, a strong coevolutionary link was found between the generalist parasites D. alatus, D. sphyrna, D. vistulae, and their hosts, and between Dactylogyrus species of Pachychilon (Leuciscidae) and their hosts. Cophylogenetic analyses suggest that host switching played an important role in the evolutionary history of Dactylogyrus parasitizing endemic cyprinoids in southern Europe. We propose that the high diversification of phylogenetically related cyprinoid species in the Mediterranean area is a process facilitating the host switching of specific parasites among highly diverse congeneric cyprinoids.  相似文献   

13.
Introduced exotic species have the potential to spread their associated parasites to native species which can be catastrophic if these hosts are immunologically naïve to the novel parasite. The guppy (Poecilia reticulata) has been disseminated worldwide outside of its native habitat and therefore could be an important source of infection to native fish species. Its parasite fauna is dominated by the ectoparasitic monogeneans, Gyrodactylus turnbulli and Gyrodactylus bullatarudis. The current study tested the host specificity of G. bullatarudis by experimentally infecting a range of isolated fish hosts, including temperate species. Surprisingly, the parasite was capable of establishing and reproducing, for several days, on the three-spined stickleback when transferred directly to this host. We also established that G. bullatarudis could be transmitted under aquarium conditions at both 25 °C and 15 °C. At the higher temperature, the parasite was even capable of reproducing on this atypical host. The implications of these findings are discussed in terms of host specificity, host switching and climate change.  相似文献   

14.
The biomagnification of methylmercury (MeHg) amongst trophic levels results in high levels of this compound in many freshwater fish species. The role of parasites in MeHg cycling and trophic transfer in freshwater systems is largely unknown. This study examined the potential for metacercariae of Apophallus brevis to accumulate and biomagnify MeHg from their second intermediate host, yellow perch, Perca flavescens. Contrary to our prediction that MeHg levels would be higher in parasites than in the host muscle tissue in which they are embedded, we found that concentrations were similar. The lack of increase in MeHg levels from host to parasite may be due to limited assimilation of host muscle tissue or, in part, to low parasite metabolism. Parasite load did not reduce fish growth and subsequently alter MeHg concentrations. This study suggests that relationships between larval parasites and their hosts do not conform to typical patterns of MeHg biomagnification seen in aquatic systems.  相似文献   

15.
In aquatic ecosystems, fish play a key role in parasite accumulation and transmission to predacious animals. In the present study, realized on seven populations of a small cyprinid fish species, the European bitterling Rhodeus amarus, we investigated (1) the role of the European bitterling as a potential intermediate or paratenic host, (2) the ability of the fish to accumulate parasites with similar final host group, and (3) its significance as a potential source of parasite infection in the ecosystem in respect to habitat characteristics. A total of 36 parasite species were recorded; 31 species (90% of all parasite specimens) were classified as endoparasites. Most of the endoparasites were found in the larval life stage, using bitterling as an intermediate or paratenic host. In particular, parasite community structure showed significantly higher proportions of allogenic parasites in comparison with autogenic. The supposed co-occurrence of parasite species with identical final host groups showed only a weak association. The adjacent reservoir areas were a significant determinant of both the total and infracommunity parasite species richness and for the mean parasite abundance. No relationship between the distance of sampling site from the adjacent reservoir and parasite community characteristics was found. As a small-sized fish with a wide distribution range and high local abundances, the European bitterling can represent a natural prey for a wide range of piscivorous predators. Due to its susceptibility to the number of larval endoparasites, this fish species may therefore fulfill the role as important transmitter of parasites to their final hosts.  相似文献   

16.
Disease‐mediated threats posed by exotic species to native counterparts are not limited to introduced parasites alone, since exotic hosts frequently acquire native parasites with possible consequences for infection patterns in native hosts. Several biological and geographical factors are thought to explain both the richness of parasites in native hosts, and the invasion success of free‐living exotic species. However, the determinants of native parasite acquisition by exotic hosts remain unknown. Here, we investigated native parasite communities of exotic freshwater fish to determine which traits influence acquisition of native parasites by exotic hosts. Model selection suggested that five factors (total body length, time since introduction, phylogenetic relatedness to the native fish fauna, trophic level and native fish species richness) may be linked to native parasite acquisition by exotic fish, but 95% confidence intervals of coefficient estimates indicated these explained little of the variance in parasite richness. Based on R2‐values, weak positive relationships may exist only between the number of parasites acquired and either host size or time since introduction. Whilst our results suggest that factors influencing parasite richness in native host communities may be less important for exotic species, it seems that analyses of general ecological factors currently fail to adequately incorporate the physiological and immunological complexity of whether a given animal species will become a host for a new parasite.  相似文献   

17.
Infection by larval trematode parasites caused sympatric chaetognath species to live nearer the surface than normal, hence to select more upper water prey than did non-parasitized chaetognaths of the same species. This was associated with contagious distribution of parasites within the population. Trematode larvae appear as opaque objects in their almost transparent chaetognath hosts. Since they also induced their hosts to be larger and to live in better-lit habitat than non-parasitized ones, the parasites render their hosts more conspicuous and thus probably more susceptible to sight hunting fish predators. Available data from seasonal cycles of parasitism in chaetognaths confirms that trematode-parasitized chaetognaths suffer higher mortality than normal, probably ascribable to predation. However, the size increase also may discourage predation by smaller, incorrect final host species. Localization of parasitism (which lowers individual reproductive potential). and predation in the same segment of the population should minimize loss of reproductive potential for the chaetognath population as a whole. This conservation of host resources can be considered primarily of benefit to the trematodes. Knowledge of parasite-induced host modification should enable prediction of mode of parasite transmission, and vice-versa. Contagious distribution of parasites in their host populations can help damp population cycling.  相似文献   

18.
In oxygen‐deficient waters, the difficulties of oxygen uptake in gill parasites and their fish hosts may influence host and parasite densities, site selection by the parasite, and effects of the parasite on host condition. This study quantified the prevalence and intensity of the gill monogenean Neodiplozoon polycotyleus in the African cyprinid fish Barbus neumayeri from an intermittent forest stream in western Uganda. Oxygen levels were low in the stream over the 12‐month study, averaging only 2.5 mg litre?1 (monthly range = 1.2–4.3 mg litre?1). However, parasite prevalence was high (47.2%), suggesting high tolerance to low oxygen in N. polycotyleus. The prevalence of parasites varied with host body size, with the highest frequency of occurrence in the middle size classes. Prevalence also varied over the year; seasonal peaks of rainfall coincided with a lower frequency of N. polycotyleus. The significantly nonrandom frequency distribution of parasites among hosts suggests regulation of parasite numbers. Of the hosts infected, 37.1% harboured one N. polycotyleus parasite, and 62.9% harboured two parasites. No fish were infected with more than two diplozoons. There was evidence for strong site specificity by N. polycotyleus within hosts; 77.7% of the parasites were located on the filaments of the second gill arch, which may relate to increased oxygen availability. In addition, only one of the 178 infected fish had more than one parasite on one side of the branchial basket. Although N. polycotyleus is undoubtedly parasitic, we found no evidence of a negative parasitic effect on the condition or reproductive status of B. neumayeri.  相似文献   

19.
Patterns associated with the evolution of parasite diversity, speciation and diversification were analysed using Dactylogyrus species (gill monogeneans) and their cyprinid hosts as a model. The aim of this study was to use this highly specific host–parasite systems to review: (1) the diversity and distribution of Dactylogyrus species, (2) the patterns of organization and structure of Dactylogyrus communities, (3) the evolution and determinants of host specificity and (4) the mode of Dactylogyrus speciation and co‐evolutionary patterns in this Dactylogyrus–cyprinid systems. Dactylogyrus are a highly diverse group of parasites, with their biogeography and distribution clearly linked to the evolutionary history of their cyprinid hosts. The coexistence of several Dactylogyrus species on one host is facilitated by increasing niche distances and the differing morphology of their reproductive organs. The positive interspecific and intraspecific interactions seem to be the most important factors determining the structure of Dactylogyrus communities. Host specificity is partially constrained by parasite phylogeny. Being a strict specialist is an ancestral character for Dactylogyrus, being the intermediate specialists or generalists are the derived characters. The evolution of attachment organ morphology is associated with both parasite phylogeny and host specificity. Considering larger and long‐lived hosts or hosts with several ecological characters as the measures of resource predictability, specialists with larger anchors occurred on larger or longer‐living fish species. Intra‐host speciation, a mode of speciation not often recorded in parasites, was observed in Dactylogyrus infecting sympatric cyprinids. Sister parasite species coexisting on the same host occupied niches that differed in at least one niche variable. Intra‐host speciation, however, was not observed in Dactylogyrus species of congeneric hosts from geographically isolated areas, which suggested association by descent and host‐switching events.  相似文献   

20.
Red algal parasites are common and have a unique type of development in which parasite nuclei are transferred to host cells and “control” host cell development. Previous phylogenetic studies have concentrated on parasites closely related to their hosts, termed adelphoparasites. A second set of parasites, usually classified in a different family or tribe from their host, termed alloparasites, have not been studied phylogenetically. This study concentrates on the wholly parasitic family, the Choreocolacaceae (Gigartinales). Using small subunit rDNA sequence data, we found that all the parasites studied are within the same family as their host. Our data support the placement of Holmsella, species of which parasitize Gracilaria and Gracilariopsis, in the order Gracilariales and suggest that Holmsella is an old parasitic genus. Most other species of the Choreocolacaceae parasitize species of the Rhodomelaceae. The one exception is the hyperparasitism between Harveyella mirabilis (Reinsch) F. Schmitz et Reinke (Rhodomelaceae) and the parasite Gonimophyllum skottsbergii Setchell (Delesseriaceae). The parasites Bostrychiocolax australis Zuccarello et West and Dawsoniocolax bostrychiae (Joly et Yamaguishi‐Tomita) Joly et Yamaguishi‐Tomita are placed within the tribe Bostrychiae as are their hosts. Harveyella mirabilis has a single origin and has switched hosts several times during its passage between the Atlantic and Pacific Oceans. Evidence does not support the continued recognition of the family Choreocolacaceae. Our results also indicate that the distinction between adelphoparasites and alloparasites is unwarranted, with a continuum between newly evolved parasites closely related to their hosts and parasites less closely related to their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号