首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《MABS-AUSTIN》2013,5(2):209-217
Limited access for high-quality biologics due to cost of treatment constitutes an unmet medical need in the United States (US) and other regions of the world. The term “biosimilar” is used to designate a follow-on biologic that meets extremely high standards for comparability or similarity to the originator biologic drug that is approved for use in the same indications. Use of biosimilar products has already decreased the cost of treatment in many regions of the world, and now a regulatory pathway for approval of these products has been established in the US. The Food and Drug Administration (FDA) led the world with the regulatory concept of comparability, and the European Medicines Agency (EMA) was the first to apply this to biosimilars. Patents on the more complex biologics, especially monoclonal antibodies, are now beginning to expire and biosimilar versions of these important medicines are in development. The new Biologics Price Competition and Innovation Act allows the FDA to approve biosimilars, but it also allows the FDA to lead on the formal designation of interchangeability of biosimilars with their reference products. The FDA’s approval of biosimilars is critical to facilitating patient access to high-quality biologic medicines, and will allow society to afford the truly innovative molecules currently in the global biopharmaceutical industry’s pipeline.  相似文献   

2.
Biosimilars are biological medicinal products that contain a version of the active substance of an already authorised original biological medicinal product (the innovator or reference product). The first approved biosimilar medicines were small proteins, and more recently biosimilar versions of innovator monoclonal antibody (mAb) drugs have entered development as patents on these more complex proteins expire. In September 2013, the first biosimilar mAb, infliximab, was authorised in Europe. In March 2015, the first biosimilar (Zarxio?, filgrastim-sndz, Sandoz) was approved by the US Food and Drug Administration; however, to date no mAb biosimilars have been approved in the US. There are currently major differences between how biosimilars are regulated in different parts of the world, leading to substantial variability in the amount of in vivo nonclinical toxicity testing required to support clinical development and marketing of biosimilars. There are approximately 30 national and international guidelines on biosimilar development and this number is growing. The European Union's guidance describes an approach that enables biosimilars to enter clinical trials based on robust in vitro data alone; in contrast, the World Health Organization's guidance is interpreted globally to mean in vivo toxicity studies are mandatory.

We reviewed our own experience working in the global regulatory environment, surveyed current practice, determined drivers for nonclinical in vivo studies with biosimilar mAbs and shared data on practice and study design for 25 marketed and as yet unmarketed biosimilar mAbs that have been in development in the past 5y. These data showed a variety of nonclinical in vivo approaches, and also demonstrated the practical challenges faced in obtaining regulatory approval for clinical trials based on in vitro data alone. The majority of reasons for carrying out nonclinical in vivo studies were not based on scientific rationale, and therefore the authors have made recommendations for a data-driven approach to the toxicological assessment of mAb biosimilars that minimises unnecessary use of animals and can be used across all regions of the world.  相似文献   

3.
《MABS-AUSTIN》2013,5(4):653-661
Biosimilar monoclonal antibodies are being developed globally for patients with different types of solid tumors and hematologic malignancies. Applications for proposed biosimilar monoclonal antibodies are being submitted to the regulatory authorities around the world and may increase patient access to key treatment options upon approval. An understanding among stakeholders (e.g., physicians, patients and their caregivers, pharmacists, payers) of the approval criteria, as well as the similarities and differences in regulatory pathways involved in biosimilar approval in different countries, as presented in this review, will facilitate identification of high-quality, safe, monoclonal antibodies that have been developed according to strict, biosimilar regulatory standards. Further guidance and resolution of the ongoing discussions on biosimilar labeling, naming, automatic substitution, and indication extrapolation may ensure, in the future, an effective and appropriate use of biosimilar monoclonal antibodies by oncologists and other stakeholders in daily clinical practice.  相似文献   

4.
A biosimilar drug is defined in the US Food and Drug Administration (FDA) guidance document as a biopharmaceutical that is highly similar to an already licensed biologic product (referred to as the reference product) notwithstanding minor differences in clinically inactive components and for which there are no clinically meaningful differences in purity, potency, and safety between the two products. The development of biosimilars is a challenging, multistep process. Typically, the assessment of similarity involves comprehensive structural and functional characterization throughout the development of the biosimilar in an iterative manner and, if required by the local regulatory authority, an in vivo nonclinical evaluation, all conducted with direct comparison to the reference product. In addition, comparative clinical pharmacology studies are conducted with the reference product. The approval of biosimilars is highly regulated although varied across the globe in terms of nomenclature and the precise criteria for demonstrating similarity. Despite varied regulatory requirements, differences between the proposed biosimilar and the reference product must be supported by strong scientific evidence that these differences are not clinically meaningful. This review discusses the challenges faced by pharmaceutical companies in the development of biosimilars.  相似文献   

5.
Biological therapies have revolutionized the treatment of several cancers and systemic immune-mediated inflammatory conditions. Expiry of patents protecting a number of biologics has provided the opportunity to commercialize highly similar versions, known as biosimilars. Biosimilars are approved by regulatory agencies via an independent pathway that requires extensive head-to-head comparison with the originator product. Biosimilars have the potential to provide savings to healthcare systems and expand patient access to biologics. In Latin American countries, regulatory frameworks for biosimilar approval have been introduced in recent years, and biosimilars of monoclonal antibody and fusion protein therapies are now emerging. However, the situation in this region is complicated by the presence of “non-comparable biotherapeutics” (also known as “intended copies”), which have not been rigorously compared with the originator product. We review the considerations for clinicians in Latin American countries, focusing on monoclonal antibody biosimilars relevant to oncology, rheumatology, gastroenterology, and dermatology.  相似文献   

6.
Many patents for the first biologicals derived from recombinant technology and, more recently, monoclonal antibodies (mAbs) are expiring. Naturally, biosimilars are becoming an increasingly important area of interest for the pharmaceutical industry worldwide, not only for emergent countries that need to import biologic products. This review shows the evolution of biosimilar development regarding regulatory, manufacturing bioprocess, comparability, and marketing. The regulatory landscape is evolving globally, whereas analytical structure and functional analyses provide the foundation of a biosimilar development program. The challenges to develop and demonstrate biosimilarity should overcome the inherent differences in the bioprocess manufacturing and physicochemical and biological characterization of a biosimilar compared to several lots of the reference product. The implementation of approaches, such as Quality by Design (QbD), will provide products with defined specifications in relation to quality, purity, safety, and efficacy that were not possible when the reference product was developed. Actually, the need to prove comparability to the reference product by the biosimilar industry has increased the knowledge about the product and the production‐process associated by the use of powerful analytical tools. The technological challenges to make copies of biologic products while attending regulatory and market demands are expected to help innovation in the direction of attaining more productive manufacturing processes. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1139–1149, 2015  相似文献   

7.
Development of biosimilar proteins is the fastest growing sector in the biopharmaceutical industry, as patents for the top 10 best-selling biologics will expire within one decade. The world’s first biosimilar of infliximab, Remsima® (CT-P13) made by Celltrion, was approved by the Committee for Medicinal Products for Human Use (CHMP) of European Medicine Agency (EMA) in June 2013. This has ignited competition between related companies for prior occupation of the global market on blockbuster biologics. However, to achieve approval for biosimilars, developing companies face many hurdles in process development, manufacturing, analysis, clinical trials, and CMC (chemical, manufacturing and controls) documentation. Recent evolutionary progress in science, engineering, and process technology throughout the biopharmaceutical industry supports to show similarity between originator and biosimilar products. The totality of evidence has been able to demonstrate the quality, efficacy, and safety of biosimilars whereas a lack of interchangeability and international standards has to be addressed. Further understanding of the timing importance by regulatory agencies will be key to maximizing the value of biosimilars.  相似文献   

8.
《MABS-AUSTIN》2013,5(2):286-293
Despite availability of biologic therapies, limited patient access to many of the most-effective cancer treatments affects overall health outcomes. To address this issue, many governments have enacted legislation for the approval of biosimilars. The term “biosimilar” refers to a biologic product that is developed to be highly similar, as opposed to identical, to a licensed biologic product (the reference or innovator product), such that, per US Food and Drug administration draft guidelines, “no clinically meaningful differences [exist] between the biological product and the reference product in terms of safety, purity, and potency.” This article presents some considerations about the development of biosimilars in cancer treatment through an overview of biosimilars from a clinical perspective. Topics covered include the development requirements and unique regulatory requirements for biosimilars, labeling considerations, potential limitations to the uptake of biosimilars, and review of some biosimilars in development for oncology indications.  相似文献   

9.
Despite availability of biologic therapies, limited patient access to many of the most-effective cancer treatments affects overall health outcomes. To address this issue, many governments have enacted legislation for the approval of biosimilars. The term “biosimilar” refers to a biologic product that is developed to be highly similar, as opposed to identical, to a licensed biologic product (the reference or innovator product), such that, per US Food and Drug administration draft guidelines, “no clinically meaningful differences [exist] between the biological product and the reference product in terms of safety, purity, and potency.” This article presents some considerations about the development of biosimilars in cancer treatment through an overview of biosimilars from a clinical perspective. Topics covered include the development requirements and unique regulatory requirements for biosimilars, labeling considerations, potential limitations to the uptake of biosimilars, and review of some biosimilars in development for oncology indications.  相似文献   

10.
Yamaguchi T  Arato T 《Biologicals》2011,39(5):328-332
Recently, WHO, EU, Japan and Canada have published guidelines on biosimilar/follow-on biologics. While there seems to be no significant difference in the general concept in these guidelines, the data to be submitted for product approval are partially different. Differences have been noted in the requirements for comparability studies on stability, prerequisites for reference product, or for the need of comparability exercise for determination of process-related impurities. In Japan, there have been many discussions about the amount and extent of data for approval of follow-on biologics. We try to clarify the scientific background and rational for regulatory pathway of biosimilar/follow-on biologics in Japan in comparison with the guidelines available from WHO, EU and Canada. In this article, we address and discuss the scientific background underlying these differences to facilitate the harmonization of follow-on biologic principles in the guidelines in future.  相似文献   

11.
In the European Union, biosimilar products have been approved since 2006 under an abbreviated pathway that leverages their similarity to an existing “reference” biological product. The products approved to date are based on recombinant versions of endogenous proteins with well-understood structures and pharmacology, but complicated safety and immunogenicity profiles. The period during the 2000s that included the first reviews, approvals, sale and use of biosimilars is referred to herein as “Biosimilars 1.0.” Over the next several years, a new and advanced tranche of biosimilars will be developed for complex reference products, including medicines used in the treatment of cancer and autoimmune diseases. A global market for biosimilars is developing and this may well foreshadow the beginning of the second era of product development. This Biosimilars 2.0 period will likely be characterized by the development of complex products, global harmonization of standards and the increasing demand for long-term monitoring of pharmaceuticals. The products developed in this period should exhibit high levels of fidelity to the reference products and should be rigorously evaluated in analytical, non-clinical and clinical comparisons. Additionally, Biosimilars 2.0 manufacturers should strive for transparency in their labels and take proactive strides to be accountable to providers and patients for the quality of their products. An important opportunity now exists for the healthcare community, industry and regulators to work in partnership, to outline the appropriate standards for these products and to facilitate increased access while meeting patients'' needs.Key words: biotechnology, biosimilars, generic drugs, monoclonal antibodies, pharmacodynamics, pharmacokinetics  相似文献   

12.
《Biologicals》2014,42(4):177-183
A biosimilar is intended to be highly similar to a reference biologic such that any differences in quality attributes (i.e., molecular characteristics) do not affect safety or efficacy. Achieving this benchmark for biologics, especially large glycoproteins such as monoclonal antibodies, is challenging given their complex structure and manufacturing. Regulatory guidance on biosimilars issued by the U.S. Food and Drug Administration, Health Canada and European Medicines Agency indicates that, in addition to a demonstration of a high degree of similarity in quality attributes, a reduced number of nonclinical and clinical comparative studies can be sufficient for approval. Following a tiered approach, clinical studies are required to address concerns about possible clinically significant differences that remain after laboratory and nonclinical evaluations. Consequently, a critical question arises: can clinical studies that satisfy concerns regarding safety and efficacy in one condition support “indication extrapolation” to other conditions? This question will be addressed by reviewing the case of a biosimilar to infliximab that was approved recently in South Korea, Europe, and Canada for multiple indications through extrapolation. The principles discussed should also apply to biosimilars of other monoclonal antibodies that are approved to treat multiple distinct conditions.  相似文献   

13.
Biosimilars are protein products that are sufficiently similar to a biopharmaceutical already approved by a regulatory agency. Several biotechnology companies and generic drug manufacturers in Asia and Europe are developing biosimilars of tumor necrosis factor inhibitors and rituximab. A biosimilar etanercept is already being marketed in Colombia and China. In the US, several natural source products and recombinant proteins have been approved as generic drugs under Section 505(b)(2) of the Food, Drug, and Cosmetic Act. However, because the complexity of large biopharmaceuticals makes it difficult to demonstrate that a biosimilar is structurally identical to an already approved biopharmaceutical, this Act does not apply to biosimilars of large biopharmaceuticals. Section 7002 of the Patient Protection and Affordable Care Act of 2010, which is referred to as the Biologics Price Competition and Innovation Act of 2009, amends Section 351 of the Public Health Service Act to create an abbreviated pathway that permits a biosimilar to be evaluated by comparing it with only a single reference biological product. This paper reviews the processes for approval of biosimilars in the US and the European Union and highlights recent changes in federal regulations governing the approval of biosimilars in the US.  相似文献   

14.
15.
Berghout A 《Biologicals》2011,39(5):293-296
Similar biotherapeutic products (SBPs) or biosimilars are biologics developed by pharmaceutical manufacturers to match originator biologics that have been on the market for a long time and lost their exclusivity (patent and market protection). The recently issued WHO guidelines on evaluation of SBPs provide clear guidance for manufacturers and regulators on how to develop and gain approval for these products. The present contribution illustrates the rationale for and general principles of the clinical programs used in the development of SBPs, taking the example of the three biosimilar products developed and marketed in Europe by Sandoz, namely growth hormone (Omnitrope?, the first ever EU biosimilar approval), erythropoietin α (Binocrit?), and filgrastim (Zarzio?).  相似文献   

16.
《Endocrine practice》2015,21(12):1387-1394
Objective: To provide clinicians with an overview of similar biologic products including biosimilars and new insulin versions available in the U.S. and of key issues associated with such products, including differences in manufacturing and regulatory approaches and their impact on clinical use.Methods: We reviewed the relevant clinical and regulatory literature.Results: Patent protections for many biologics including several insulin preparations have or will expire shortly. This opens the door for new insulin versions to enter the U.S. and global marketplace. The development, manufacturing, and approval process for similar biologic products is more complex than for generic versions of small molecules. Most similar biologic products in the U.S. will be submitted for approval under section 351(k), a newly created biosimilar regulatory pathway. However, some biologics, including new insulin versions, will be submitted via the existing 505(b) regulatory pathway. These regulatory pathways have implications for how such products may be labeled, how they may be dispensed, and how patients may perceive them. The immunogenicity of biologics can affect safety and efficacy and can be altered through subtle changes in manufacturing. With the arrival of new insulin versions, health care providers will need to understand the implications of interchangeability, therapeutic equivalence, substitution, switching, and new delivery devices.Conclusion: An understanding of the above topics will be important as physicians, payers, and patients choose between similar versions of a reference listed biologic product.Abbreviations:BLA = biologics license applicationBPCIA = Biologics Price Competition and Innovation ActEU = European UnionFDA = Food and Drug AdministrationINN = international nonproprietary nameNDA = new drug applicationPD = pharmacodynamicPK = pharmacokineticPRCA = pure red cell aplasia  相似文献   

17.
The development of biosimilar products is expected to grow rapidly over the next five years as a large number of approved biologics reach patent expiry. The pathway to regulatory approval requires that similarity of the biosimilar to the reference product be demonstrated through physiochemical and structural characterization, as well as within in vivo studies that compare the safety and efficacy profiles of the products. To support nonclinical and clinical studies pharmacokinetic (PK) assays are required to measure the biosimilar and reference products with comparable precision and accuracy. The most optimal approach is to develop a single PK assay, using a single analytical standard, for quantitative measurement of the biosimilar and reference products in serum matrix. Use of a single PK assay for quantification of multiple products requires a scientifically sound testing strategy to evaluate bioanalytical comparability of the test products within the method, and provide a solid data package to support the conclusions. To meet these objectives, a comprehensive approach with scientific rigor was applied to the development and characterization of PK assays that are used in support of biosimilar programs. Herein we describe the bioanalytical strategy and testing paradigm that has been used across several programs to determine bioanalytical comparability of the biosimilar and reference products. Data from one program is presented, with statistical results demonstrating the biosimilar and reference products were bioanalytically equivalent within the method. The cumulative work has established a framework for future biosimilar PK assay development.  相似文献   

18.
《MABS-AUSTIN》2013,5(5):1178-1189
The development of biosimilar products is expected to grow rapidly over the next five years as a large number of approved biologics reach patent expiry. The pathway to regulatory approval requires that similarity of the biosimilar to the reference product be demonstrated through physiochemical and structural characterization, as well as within in vivo studies that compare the safety and efficacy profiles of the products. To support nonclinical and clinical studies pharmacokinetic (PK) assays are required to measure the biosimilar and reference products with comparable precision and accuracy. The most optimal approach is to develop a single PK assay, using a single analytical standard, for quantitative measurement of the biosimilar and reference products in serum matrix. Use of a single PK assay for quantification of multiple products requires a scientifically sound testing strategy to evaluate bioanalytical comparability of the test products within the method, and provide a solid data package to support the conclusions. To meet these objectives, a comprehensive approach with scientific rigor was applied to the development and characterization of PK assays that are used in support of biosimilar programs. Herein we describe the bioanalytical strategy and testing paradigm that has been used across several programs to determine bioanalytical comparability of the biosimilar and reference products. Data from one program is presented, with statistical results demonstrating the biosimilar and reference products were bioanalytically equivalent within the method. The cumulative work has established a framework for future biosimilar PK assay development.  相似文献   

19.
20.
In May 2012, Health Canada and other participants held a National Summit on Subsequent Entry Biologics (SEBs). Health Canada released a guidance document in March 2010 describing policy positions and data requirements for approval of SEBs. While Health Canada and health agencies in other regulatory jurisdictions are aligned on many scientific principles related to biosimilar drugs, Health Canada's specific requirements may not be widely understood by many Canadian stakeholders. The Summit provided an opportunity for education and dialog among physicians who prescribe biologics, provincial payers, and industry on the following topics: preclinical and clinical comparability studies; manufacturing and other product differences; extrapolation of indications; substitution and interchangeability of SEBs with reference biologic drugs in clinical practice; payers' current perspective; pharmacovigilance and naming. It is anticipated that the consensus reached at this meeting will further educate Canadian healthcare professionals, provincial payers, and insurers about the appropriate use of SEBs, and may be of general interest to others internationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号