首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Three-dimensional (3D) path of the body centre of mass (CM) over an entire stride was computed from ground reaction forces during walking at constant average speed on a treadmill mounted on 3D force sensors. Data were obtained from 18 healthy adults at speeds ranging from 0.30 to 1.40 m s?1, in 0.1 m s?1 increments. Six subsequent strides were analyzed for each subject and speed (total strides=1296). The test session lasted about 30 min (10 min for walking). The CM path had an upward concave figure-of-eight shape that was highly consistent within and across subjects. Vertical displacement of the CM increased monotonically as a function of walking speed. The forward and particularly lateral displacements of the CM showed a U-shaped relationship to speed. The same held for the total 3D displacement (25.6–16.0 cm, depending on the speed). The results provide normative benchmarks and suggest hypotheses for further physiologic and clinical research. The familiar inverted pendulum model might be expanded to gyroscopic, “spin-and-turn” models. Abnormalities of the 3D path might flag motor impairments and recovery.  相似文献   

2.
Although the effects of caffeine ingestion on athletic performance in men have been studied extensively, there is limited previous research examining caffeine's effects on women of average fitness levels participating in common modes of physical activity. The purpose of this study was to determine the effect of 2 levels of caffeine dosage on the metabolic and cardiorespiratory responses to treadmill walking in women. Subjects were 20 women (19-28 years of age) of average fitness, not habituated to caffeine. Each subject was assigned randomly a 3-mg x kg(-1) dose of caffeine, 6-mg x kg(-1) dose of caffeine, and placebo for 3 trials of moderate steady-state treadmill walking at 94 m x min(-1) (3.5 mph). Steady-state rating of perceived exertion (RPE), heart rate (HR), respiratory exchange ratio (RER), weight-relative VO2, %VO2max reserve (%VO2R), and rate of energy expenditure (REE) were measured during each trial. Repeated measures analysis of variance revealed that a 6-mg x kg(-1), but not a 3-mg x kg(-1) dose of caffeine increased VO2 (p = 0.04), REE (p = 0.03), and %VO2R (p = 0.03), when compared to the placebo. Caffeine had no effect on RPE, HR, or RER. No significant differences were observed between the placebo trials and the 3-mg x kg(-1) dose trials. Although a 6-mg x kg(-1) dose of caffeine significantly increased REE during exercise, the observed increase (approximately 0.23 kcal x min(-1)) would not noticeably affect weight loss. Because caffeine had no effect on RPE, it would not be prudent for a trainer to recommend caffeine in order to increase a woman's energy expenditure or to decrease perception of effort during mild exercise. These data also demonstrate that caffeine intake should not interfere with monitoring walking intensity by tracking exercise heart rate in women.  相似文献   

3.
The metabolic cost of walking is determined by many mechanical tasks, but the individual contribution of each task remains unclear. We hypothesized that the force generated to support body weight and the work performed to redirect and accelerate body mass each individually incur a significant metabolic cost during normal walking. To test our hypothesis, we measured changes in metabolic rate in response to combinations of simulated reduced gravity and added loading. We found that reducing body weight by simulating reduced gravity modestly decreased net metabolic rate. By calculating the metabolic cost per Newton of reduced body weight, we deduced that generating force to support body weight comprises approximately 28% of the metabolic cost of normal walking. Similar to previous loading studies, we found that adding both weight and mass increased net metabolic rate in more than direct proportion to load. However, when we added mass alone by using a combination of simulated reduced gravity and added load, net metabolic rate increased about one-half as much as when we added both weight and mass. By calculating the cost per kilogram of added mass, we deduced that the work performed on the center of mass comprises approximately 45% of the metabolic cost of normal walking. Our findings support the hypothesis that force and work each incur a significant metabolic cost. Specifically, the cost of performing work to redirect and accelerate the center of mass is almost twice as great as the cost of generating force to support body weight.  相似文献   

4.
The non-disabled human ankle joint was examined during walking in an attempt to determine overall system characteristics for use in the design of ankle prostheses. The hypothesis of the study was that the quasi-stiffness of the ankle changes when walking at different walking speeds. The hypothesis was examined using sagittal plane ankle moment versus ankle angle curves from 24 able-bodied subjects walking over a range of speeds. The slopes of the moment versus ankle angle curves (quasi-stiffness) during loading appeared to change as speed was increased and the relationship between the moment and angle during loading became increasingly non-linear. The loading and unloading portions of the moment versus angle curves showed clockwise loops (hysteresis) at self-selected slow speeds that reduced essentially to zero as the speed increased to self-selected normal speeds. Above self-selected normal speeds, the loops started to traverse a counter-clockwise path that increased in area as the speed was increased. These characteristics imply that the human ankle joint could be effectively replaced with a rotational spring and damper for slow to normal walking speeds. However, to mimic the characteristics of the human ankle during walking at fast speeds, an augmented system would be necessary. This notion is supported by the sign of the ankle power at the time of opposite heel contact, which was negative for slow speeds, was near zero at normal speeds, and was positive for fast walking speeds.  相似文献   

5.
The purpose of this study was to characterize the contributions of individual muscles to forward progression and vertical support during walking. We systematically perturbed the forces in 54 muscles during a three-dimensional simulation of walking, and computed the changes in fore-aft and vertical accelerations of the body mass center due to the altered muscle forces during the stance phase. Our results indicate that muscles that provided most of the vertical acceleration (i.e., support) also decreased the forward speed of the mass center during the first half of stance (vasti and gluteus maximus). Similarly, muscles that supported the body also propelled it forward during the second half of stance (soleus and gastrocnemius). The gluteus medius was important for generating both forward progression and support, especially during single-limb stance. These findings suggest that a relatively small group of muscles provides most of the forward progression and support needed for normal walking. The results also suggest that walking dynamics are influenced by non-sagittal muscles, such as the gluteus medius, even though walking is primarily a sagittal-plane task.  相似文献   

6.
The plantarflexors provide a major source of propulsion during walking. When mechanical power generation from the plantarflexor muscles is limited, other joints may compensate to maintain a consistent walking velocity, but likely at increased metabolic cost. The purpose of this study was to determine how a unilateral reduction in ankle plantarflexor power influences the redistribution of mechanical power generation within and across limbs and the associated change in the metabolic cost of walking. Twelve unimpaired young adults walked with an ankle brace on the dominant limb at 1.2m/s on a dual-belt instrumented treadmill. Lower extremity kinematics and kinetics as well as gas exchange data were collected in two conditions: (1) with the brace unlocked (FREE) and (2) with the brace locked (FIXED). The brace significantly reduced ankle plantarflexion excursion by 12.96±3.60° (p<0.001) and peak ankle mechanical power by 1.03±0.51W/kg (p<0.001) in the FIXED versus FREE condition. Consequently, metabolic power (W/kg) of walking in the FIXED condition increased by 7.4% compared to the FREE condition (p=0.03). Increased bilateral hip mechanical power generation was observed in the FIXED condition (p<0.001). These results suggest that walking with reduced ankle power increases metabolic demand due to the redistribution of mechanical power generation from highly efficient ankle muscle-tendons to less efficient hip muscle-tendons. A within and across limb redistribution of mechanical workload represents a potential mechanism for increased metabolic demand in pathological populations with plantarflexion deficits or those that walk with an ankle-foot orthosis that restricts range of motion.  相似文献   

7.
8.
9.
The purpose of this study was to investigate whether or not the neuromuscular locomotor system is optimized at a unique speed by examining the variability of the ground reaction force (GRF) pattern during walking in relation to different constant speeds. Ten healthy male subjects were required to walk on a treadmill at 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0 km/h. Three components [vertical (F(z)), anteroposterior (F(y)), and mediolateral (F(x)) force] of the GRF were independently measured for approximately 35 steps consecutively for each leg. To quantify the GRF pattern, five indexes (first and second peaks of F(z), first and second peaks of F(y), and F(x) peak) were defined. Coefficients of variation were calculated for these five indexes to evaluate the GRF variability for each walking speed. It became clear for first and second peaks of F(z) and F(x) peak that index variabilities increased in relation to increments in walking speed, whereas there was a speed (5.5-5.8 km/h) at which variability was minimum for first and second peaks of F(y), which were related to forward propulsion of the body. These results suggest that there is "an optimum speed" for the neuromuscular locomotor system but only for the propulsion control mechanism.  相似文献   

10.
Treadmill walking aims to simulate overground walking, but intra-stride belt speed variations of treadmills result in some interaction between treadmill and subject, possibly obstructing this aim. Especially in self-paced treadmill walking, in which the belt speed constantly adjusts to the subject, these interactions might affect the gait pattern significantly. The aim of this study was to quantify the energy exchange between subject and treadmill, during the fixed speed (FS) and self-paced (SP) modes of treadmill walking. Eighteen subjects walked on a dual-belt instrumented treadmill at both modes. The energy exchange was calculated as the integration of the product of the belt speed deviation and the fore-aft ground reaction force over the stride cycle. The total positive energy exchange was 0.44 J/stride and the negative exchange was 0.11 J/stride, which was both less than 1.6% of the performed work on the center of mass. Energy was mainly exchanged from subject to treadmill during both the braking and propulsive phase of gait. The two treadmill modes showed a similar pattern of energy exchange, with a slightly increased energy exchange during the braking phase of SP walking. It is concluded that treadmill walking is only mildly disturbed by subject-belt interactions when using instrumented treadmills with adequate belt control.  相似文献   

11.
The ankle plantar flexor muscles, gastrocnemius (Gas) and soleus (Sol), have been shown to play important roles in providing body support and forward propulsion during human walking. However, there has been disagreement about the relative contributions of Gas and Sol to these functional tasks. In this study, using independent manipulations of body weight and body mass, we examined the relative contribution of the individual plantar flexors to support and propulsion. We hypothesized that Gas and Sol contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion. We tested this hypothesis by measuring muscle activity while experimentally manipulating body weight and mass by 1) decreasing body weight using a weight support system, 2) increasing body mass alone using a combination of equal added trunk load and weight support, and 3) increasing trunk loads (increasing body weight and mass). The rationale for this study was that muscles that provide body support would be sensitive to changes in body weight, whereas muscles that provide forward propulsion would be sensitive to changes in body mass. Gas activity increased with added loads and decreased with weight support but showed only a small increase relative to control trials when mass alone was increased. Sol activity showed a similar increase with added loads and with added mass alone and decreased in early stance with weight support. Therefore, we accepted the hypothesis that Sol and Gas contribute to body support, whereas Sol is the primary contributor to forward trunk propulsion.  相似文献   

12.
13.
14.
15.
There are evidences to suggest that wearing footwear constrains the natural barefoot motion during locomotion. Unlike prior studies that deduced foot motions from shoe sole displacement parameters, the aim of this study was to examine the effect of footwear motion on forefoot to rearfoot relative motion during walking and running. The use of a multi-segment foot model allowed accurate both shoe sole and foot motions (barefoot and shod) to be quantified. Two pairs of identical sandals with different midsole hardness were used. Ten healthy male subjects walked and ran in each of the shod condition.The results showed that for barefoot locomotion there was more eversion of the forefoot and it occurred faster than for shod locomotion. In this later condition, the range of eversion was reduced by 20% and the rate of eversion in late stance by 60% in comparison to the barefoot condition. The sole constrained both the torsional (eversion/inversion) and adduction range of motion of the foot. Interestingly, during the push-off phase of barefoot locomotion the rate and direction of forefoot torsion varied between individuals. However, most subjects displayed a forefoot inversion direction of motion while shod. Therefore, this experiment showed that the shoes not only restricted the natural motion of the barefoot but also appeared to impose a specific foot motion pattern on individuals during the push-off phase. These findings have implications for the matching of footwear design characteristics to individual natural foot function.  相似文献   

16.
Evidence of negative stereotypes, prejudice and discrimination towards obese individuals has been widely documented. However, the effect of a larger body size on social network ties or friendship formations is less well understood. In this paper, we explore the extent to which higher body weight results in social marginalization of adolescents. Using data from a nationally representative sample of adolescents, we estimate endogeneity-corrected models including school-level fixed effects that account for bi-directionality and unobserved confounders to ascertain the effect of body weight on social network ties. We find that obese adolescents have fewer friends and are less socially integrated than their non-obese counterparts. We also find that such penalties in friendship networks are present among whites but not African-Americans or Hispanics, with the largest effect among white females. These results are robust to common environmental influences at the school-level and to controls for preferences, risk attitudes, low self-esteem and objective measures of physical attractiveness.  相似文献   

17.
Walking is a motor task requiring coordination of many muscles. Previous biomechanical studies, based primarily on analyses of the net ankle moment during stance, have concluded different functional roles for the plantar flexors. We hypothesize that some of the disparities in interpretation arise because of the effects of the uniarticular and biarticular muscles that comprise the plantar flexor group have not been separated. Furthermore, we believe that an accurate determination of muscle function requires quantification of the contributions of individual plantar flexor muscles to the energetics of individual body segments. In this study, we examined the individual contributions of the ankle plantar flexors (gastrocnemius (GAS); soleus (SOL)) to the body segment energetics using a musculoskeletal model and optimization framework to generate a forward dynamics simulation of normal walking at 1.5 m/s. At any instant in the gait cycle, the contribution of a muscle to support and forward progression was defined by its contribution to trunk vertical and horizontal acceleration, respectively, and its contribution to swing initiation by the mechanical energy it delivers to the leg in pre-swing (i.e., double-leg stance prior to toe-off). GAS and SOL were both found to provide trunk support during single-leg stance and pre-swing. In early single-leg stance, undergoing eccentric and isometric activity, they accelerate the trunk vertically but decelerate forward trunk progression. In mid single-leg stance, while isometric, GAS delivers energy to the leg while SOL decelerates it, and SOL delivers energy to the trunk while GAS decelerates it. In late single-leg stance through pre-swing, though GAS and SOL both undergo concentric activity and accelerate the trunk forward while decelerating the downward motion of the trunk (i.e., providing forward progression and support), they execute different energetic functions. The energy produced from SOL accelerates the trunk forward, whereas GAS delivers almost all its energy to accelerate the leg to initiate swing. Although GAS and SOL maintain or accelerate forward motion in mid single-leg stance through pre-swing, other muscles acting at the beginning of stance contribute comparably to forward progression. In summary, throughout single-leg stance both SOL and GAS provide vertical support, in mid single-leg stance SOL and GAS have opposite energetic effects on the leg and trunk to ensure support and forward progression of both the leg and trunk, and in pre-swing only GAS contributes to swing initiation.  相似文献   

18.
This study estimated the passive ankle joint moment during standing and walking initiation and its contribution to total ankle joint moment during that time. The decrement of passive joint moment due to muscle fascicle shortening upon contraction was taken into account. Muscle fascicle length in the medial gastrocnemius, which was assumed to represent muscle fascicle length in plantarflexors, was measured using ultrasonography during standing, walking initiation, and cyclical slow passive ankle joint motion. Total ankle joint moment during standing and walking initiation was calculated from ground reaction forces and joint kinematics. Passive ankle joint moment during the cyclical ankle joint motion was measured via a dynamometer. Passive ankle joint moment during standing and at the time (Tp) when the MG muscle-tendon complex length was longest in the stance phase during walking initiation were 2.3 and 5.4 Nm, respectively. The muscle fascicle shortened by 2.9 mm during standing compared with the length at rest, which decreased the contribution of passive joint moment from 19.9% to 17.4%. The muscle fascicle shortened by 4.3 mm at Tp compared with the length at rest, which decreased the contribution of passive joint moment from 8.0% to 5.8%. These findings suggest that (a) passive ankle joint moment plays an important role during standing and walking initiation even in view of the decrement of passive joint moment due to muscle fascicle shortening upon muscle contraction, and (b) muscle fascicle shortening upon muscle contraction must be taken into account when estimating passive joint moment during movements.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号