首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High cholesterol turnover catalyzed by cholesterol 24‐hydroxylase is essential for neural functions, especially learning. Because 24(S)‐hydroxycholesterol (24‐OHC), produced by 24‐hydroxylase, induces apoptosis of neuronal cells, it is vital to eliminate it rapidly from cells. Here, using differentiated SH‐SY5Y neuron‐like cells as a model, we examined whether 24‐OHC is actively eliminated via transporters induced by its accumulation. The expression of ABCA1 and ABCG1 was induced by 24‐OHC, as well as TO901317 and retinoic acid, which are ligands of the nuclear receptors liver X receptor/retinoid X receptor (LXR/RXR). When the expression of ABCA1 and ABCG1 was induced, 24‐OHC efflux was stimulated in the presence of high‐density lipoprotein (HDL), whereas apolipoprotein A‐I was not an efficient acceptor. The efflux was suppressed by the addition of siRNA against ABCA1, but not by ABCG1 siRNA. To confirm the role of each transporter, we analyzed human embryonic kidney 293 cells stably expressing human ABCA1 or ABCG1; we clearly observed 24‐OHC efflux in the presence of HDL, whereas efflux in the presence of apolipoprotein A‐I was marginal. Furthermore, the treatment of primary cerebral neurons with LXR/RXR ligands suppressed the toxicity of 24‐OHC. These results suggest that ABCA1 actively eliminates 24‐OHC in the presence of HDL as a lipid acceptor and protects neuronal cells.  相似文献   

2.
Epiplexus cells are a population of innate immune cells in the choroid plexus of the brain ventricles. They are thought to contribute to the immune component of the blood-cerebrospinal-fluid-barrier (BCSFB). Here we have developed a novel technique for studying epiplexus cells in acutely isolated, live and intact choroid plexus. We show that epiplexus cells are potently activated by exogenous ATP, increasing their motility within the tissue. This ATP-induced chemokinesis required activation of pannexin-1 channels, which are expressed by the epithelial cells of the choroid plexus and not the epiplexus cells themselves. Furthermore, ATP acts at least in part through the P2X4 ionotropic purinergic receptor. Thus, the resident immune cells of the choroid plexus appear to be in communication with the epithelial cells through pannexin-1 channels.  相似文献   

3.
Mammalian spermatozoa undergo important plasma membrane maturation steps during epididymal transit. Among these, changes in lipids and cholesterol are of particular interest as they are necessary for fertilization. However, molecular mechanisms regulating these transformations inside the epididymis are still poorly understood. Liver X receptors (LXRs), the nuclear receptors for oxysterols, are of major importance in intracellular cholesterol homeostasis, and LXR−/−-deficient male mice have already been shown to have reduced fertility at an age of 5 months and complete sterility for 9-month-old animals. This sterility phenotype is associated with testes and caput epididymides epithelial defects. The research presented here was aimed at investigating how LXRs act in the male caput epididymidis by analyzing key actors in cholesterol homeostasis. We show that accumulation of cholesteryl esters in LXR−/− male mice is associated with a specific loss of ABCA1 and an increase in apoptosis of apical cells of the proximal caput epididymidis. ATP-binding cassette G1 (ABCG1) and scavenger receptor B1 (SR-B1), two other cholesterol transporters, show little if any modifications. Our study also revealed that SR-B1 appears to have a peculiar expression pattern along the epididymal duct. These results should help in understanding the functional roles of LXR in cholesterol trafficking processes in caput epididymidis.  相似文献   

4.
Epiplexus cells are a population of innate immune cells in the choroid plexus of the brain ventricles. They are thought to contribute to the immune component of the blood-cerebrospinal-fluid-barrier (BCSFB). Here we have developed a novel technique for studying epiplexus cells in acutely isolated, live and intact choroid plexus. We show that epiplexus cells are potently activated by exogenous ATP, increasing their motility within the tissue. This ATP-induced chemokinesis required activation of pannexin-1 channels, which are expressed by the epithelial cells of the choroid plexus and not the epiplexus cells themselves. Furthermore, ATP acts at least in part through the P2X4 ionotropic purinergic receptor. Thus, the resident immune cells of the choroid plexus appear to be in communication with the epithelial cells through pannexin-1 channels.  相似文献   

5.
6.
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux.  相似文献   

7.
8.
9.
Previously, the authors have shown that the molecular interaction between caveolin-1 and ATP-binding cassette transporter A1 (ABCA1) is associated with the high-density lipoprotein (HDL)-mediated cholesterol efflux pathway in aortic endothelial cells (ECs). This study analyzed the role ABCA1 plays in caveolin-1-mediated cholesterol efflux in aortic ECs. Knockdown of ABCA1 by siRNA in primary rat aortic ECs after cholesterol treatment did not affect caveolin-1 expression but led to the retention of caveolin-1 in the Golgi apparatus, impaired caveolin-1 oligomerization, and reduced cholesterol efflux. Immunoblotting assay and immunofluorescence microscopy demonstrated that HDL transiently up-regulated ABCA1 expression, induced caveolin-1 oligomerization, and promoted its Golgi exit, thereby enhancing cholesterol efflux. These HDL-induced events, however, were inhibited by down-regulation of ABCA1. It is concluded that HDL up-regulates ABCA1 expression, which in turn modulates the oligomerization and Golgi exit of caveolin-1 to enhance cholesterol efflux in aortic ECs.  相似文献   

10.
Consumption of trans fatty acids (TFA) increase cardiovascular risk more than do saturated FA, but the mechanisms explaining their atherogenicity are still unclear. We investigated the impact of membrane incorporation of TFA on cholesterol efflux by exposing J774 mouse macrophages or human monocyte-derived macrophages (HMDM) to media enriched or not (standard medium) with industrially produced elaidic (trans-9 18:1) acid, naturally produced vaccenic (trans-11 18:1) acid (34 h, 70 μM) or palmitic acid. In J774 macrophages, elaidic and palmitic acid, but not vaccenic acid, reduced ABCA1-mediated efflux by ~ 23% without affecting aqueous diffusion, SR-BI or ABCG1-mediated pathways, and this effect was maintained in cholesterol-loaded cells. The impact of elaidic acid on the ABCA1 pathway was weaker in cholesterol-normal HMDM, but elaidic acid induced a strong reduction of ABCA1-mediated efflux in cholesterol-loaded cells (− 36%). In J774 cells, the FA supplies had no impact on cellular free cholesterol or cholesteryl ester masses, the abundance of ABCA1 mRNA or the total and plasma membrane ABCA1 protein content. Conversely, TFA or palmitic acid incorporation induced strong modifications of the membrane FA composition with a decrease in the ratio of (cis-monounsaturated FA + polyunsaturated FA):(saturated FA + TFA), with elaidic and vaccenic acids representing each 20% and 13% of the total FA composition, respectively. Moreover, we demonstrated that cellular ATP was required for the effect of elaidic acid, suggesting that it contributes to atherogenesis by impairing ABCA1-mediated cholesterol efflux in macrophages, likely by decreasing the membrane fluidity, which could thereby reduce ATPase activity and the function of the transporter.  相似文献   

11.
ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 mediate the efflux of cholesterol and other sterols. Both transporters are expressed on the fetal capillaries of the placenta and are involved in maternal-to-fetal cholesterol delivery. In this study, we report that ABCA1 and ABCG1 are also present on the syncytiotrophoblast, the maternal facing placental membrane. Syncytial ABCA1 expression is apical, suggesting a role in cholesterol efflux to the mother, while ABCG1 is expressed basolaterally indicating transport to the fetus. Silencing of ABCA1 expression in primary trophoblasts in culture, or pharmacological antagonism by glyburide, decreased cholesterol efflux to apolipoprotein A-I (apoA-I) compared to controls, while ABCG1-silencing decreased cholesterol efflux to high density lipoproteins (HDL). In contrast, treatment with endogenous or synthetic LXR α/β ligands such as T0901317 increased ABCA1 and ABCG1 expression and enhanced cholesterol efflux to apoA-I and HDL, respectively, while treatment with pharmacological PPAR-α or -γ ligands was without effect. Trophoblasts transfected with ABCA1 or ABCG1 siRNA were more sensitive to toxic oxysterols substrates (25-hydroxycholesterol and 7-ketocholesterol) compared to mock-transfected cells, while prior treatment with T0901317 reduced oxysterol-mediated toxicity. These results identify syncytial ABCA1 and ABCG1 as important, inducible cholesterol transporters which also prevent placental accumulation of cytotoxic oxysterols.  相似文献   

12.
13.
An unusual sterolic mixture (82.3% of 24‐isopropylated sterols) and its major component, 24‐isopropylcholesterol, isolated from a marine sponge, Ciocalypta sp. (Halichondriidae), reduce cholesterol uptake, basolateral secretion and ACAT‐2 mRNA expression and increase the expression of ABCA1 mRNA in Caco‐2 cells. The decreases of cholesterol uptake and secretion induced by 24‐isopropylcholesterol alone were more than that of both the sterolic mixture and β‐sitosterol. These data add a new sterol, 24‐isopropylcholesterol, to sterols that may reduce intestinal cholesterol absorption. J. Cell. Biochem. 106: 659–665, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
The role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages. ApoA-I-mediated cholesterol efflux from aortic EC was 2.6-fold higher (P < 0.0001) for cells from transgenic versus control mice. On normal chow diet, Tie2 hABCA1 transgenic mice had a 25% (P < 0.0001) increase in HDL-cholesterol (HDL-C) and more than a 2-fold increase of eNOS mRNA in the aorta (P < 0.04). After 6 months on a high-fat, high-cholesterol (HFHC) diet, transgenic mice compared with controls had a 40% increase in plasma HDL-C (P < 0.003) and close to 40% decrease in aortic lesions (P < 0.02). Aortas from HFHC-fed transgenic mice also showed gene expression changes consistent with decreased inflammation and apoptosis. Beneficial effects of the ABCA1 transgene on HDL-C levels or on atherosclerosis were absent when the transgene was transferred onto ApoE or Abca1 knockout mice. In summary, expression of hABCA1 in EC appears to play a role in decreasing diet-induced atherosclerosis in mice and is associated with increased plasma HDL-C levels and beneficial gene expression changes in EC.  相似文献   

15.
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.  相似文献   

16.
17.
18.
19.
The ATP binding cassette transporter (ABCA1) A1 is a key determinant of circulating high density lipoprotein cholesterol (HDL-C) levels. Mutations in ABCA1 are a major genetic contributor to low HDL-C levels within the general population. Following the finding of three different ABCA1 mutations, p.C978fsX988, p.T1512M and p.N1800H in a subject with hypoalphalipoproteinemia, we aimed to establish whether the p.C978fsX988 truncation exerted a dominant negative effect on the full-length ABCA1 alleles within family members as has been reported for other ABCA1 truncations. Characterisation of the p.C978fsX988 mutant in transfected HEK 293 cells showed it to be expressed as a GFP fusion protein but lacking in cholesterol efflux function. This was in keeping with results from cholesterol efflux assays in the fibroblasts of p.C978fsX988 carriers which also showed impaired efflux. Allele- specific quantification of p.C978fsX988 mRNA and analysis of ABCA1 protein levels in the fibroblasts of p.C978fsX988 heterozygotes showed negligible levels of mRNA and protein expression. There was no evidence of a dominant negative effect on wildtype or p.N1800H protein levels. We conclude that in the case of the p.C978fsX988 truncated mutant a lack of expression precludes it from having a dominant negative effect.  相似文献   

20.
Patients with pulmonary alveolar proteinosis (PAP) display impaired surfactant clearance, foamy, lipid-filled alveolar macrophages, and increased cholesterol metabolites within the lung. Neutralizing autoantibodies to granulocyte-macrophage colony-stimulating factor (GM-CSF) are also present, resulting in virtual GM-CSF deficiency. We investigated ABCG1 and ABCA1 expression in alveolar macrophages of PAP patients and GM-CSF knockout (KO) mice, which exhibit PAP-like pulmonary pathology and increased pulmonary cholesterol. Alveolar macrophages from both sources displayed a striking similarity in transporter gene dysregulation, consisting of deficient ABCG1 accompanied by highly increased ABCA1. Peroxisome proliferator-activated receptor gamma (PPARgamma), a known regulator of both transporters, was deficient, as reported previously. In contrast, the liver X receptor alpha, which also upregulates both transporters, was highly increased. GM-CSF treatment increased ABCG1 expression in macrophages in vitro and in PAP patients in vivo. Overexpression of PPARgamma by lentivirus-PPARgamma transduction of primary alveolar macrophages, or activation by rosiglitazone, also increased ABCG1 expression. These results suggest that ABCG1 deficiency in PAP and GM-CSF KO alveolar macrophages is attributable to the absence of a GM-CSF-mediated PPARgamma pathway. These findings document the existence of ABCG1 deficiency in human lung disease and highlight a critical role for ABCG1 in surfactant homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号