首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aging was associated with an increase in the density of specific binding sites for [3H]imipramine in postmortem specimens of human hypothalamus, frontal cortex, and parietal cortex. In general, [3H]imipramine binding was not affected by factors considered difficult to control in postmortem studies, i.e., time from death to autopsy and cause of death. The in vitro regulation of [3H]imipramine binding by sodium was impaired with age in hypothalamic homogenates. In vitro regulation of [3H]imipramine binding by chloride was intact. Determination of the concentrations of 5-hydroxytryptamine (serotonin) and 5-hydroxyindoleacetic acid in hypothalamus and frontal cortex indicated no apparent age-related changes in indole metabolism. The age-related increase in brain [3H]imipramine binding and impairment in the in vitro regulation of binding by ions are similar to changes observed previously in aged mouse brain. The increase in brain antidepressant binding sites is discussed in relationship to other indices of brain serotonergic function in aging and to the relationship of [3H]imipramine binding and depression.  相似文献   

2.
A number of 5-hydroxytryptamine (5-HT) uptake inhibitors have been shown to displace the binding of [3H]imipramine to rat cortical membranes in a complex manner with Hill slopes less than unity. Norzimeldine displaced the binding of [3H]imipramine in a biphasic manner with IC50 values for the two components of about 30 nM and 30 microM. This latter site alone was found in tissues that had been treated with a protease. Binding to both of these sites was displaced by 10 microM desipramine. The protease-sensitive [3H]imipramine binding sites were found to be saturable, high-affinity binding sites with a KD of 8 nM. The number of these sites varied between brain regions and was positively correlated with the regional distribution of [14C]5-HT but not [3H]noradrenaline uptake. This was not the case however for the protease-resistant but desipramine-displaceable binding sites. Since most previous [3H]imipramine binding studies have been performed with high concentrations of desipramine (10 microM) to define "specific binding," these data would suggest that either protease-sensitivity or displacability by 1 microM norzimeldine would give more reliable estimates of the specific binding.  相似文献   

3.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex.  相似文献   

4.
Abstract: Apparent specific binding of [3H]imipramine to human platelet membranes at high concentrations of imipramine showed deviation from that expected of a single binding site, a result consistent with a low-affinity binding site. The deviation was due to displaceable, saturable binding to the glass fibre filters used in the assays. Imipramine, chloripramine, desipramine, and fluoxetine inhibited binding to filters whereas 5-hydroxytryptamine and ethanol were ineffective. Experimental conditions were developed that eliminated filter binding, allowing assay of high and low-affinity binding to membranes. Failure to correct for filter binding may lead to overestimation of binding parameters, Bmax and KD for high-affinity binding to membranes, and may also be misinterpreted as indicating a low-affinity binding component in both platelet and brain membranes. Low-affinity binding ( KD < 2 μ M ) of imipramine to human platelet membranes was demonstrated and its significance discussed.  相似文献   

5.
Seasonal rhythmicity in the occurrence of acute depressive episodes and the therapeutic efficacy of light exposure suggest the possible involvement of the pineal gland or other biological oscillators in the pathophysiology of depressive illness. We have performed studies to clarify whether different light/dark (LD) cycle schedules may induce changes in the biochemical targets of antidepressants in the rat CNS. In particular, we have investigated the effect of short- (LD 8:16) or long-day (LD 14:10) photoperiods on different biochemical parameters of serotonergic neurons. A significant increase in the density of [3H]imipramine ([3H]IMI) binding and in the Vmax of 5-[3H]hydroxytryptamine (5-[3H]HT) uptake was found in the hypothalamus of LD 8:16-with respect to LD 14:10-exposed rats, whereas no difference was found in the kinetic properties of postsynaptic 5-HT receptors and in 5-HT metabolism in the hypothalami and cerebral cortices of rats exposed to the two different photoperiods. A seasonal rhythm of [3H]IMI binding sites and 5-HT uptake seems to exist only in certain brain areas, such as the hypothalamus, because no differences were found in the cerebral cortex of LD 14:10- and LD 8:16-accustomed rats. [3H]IMI binding and 5-HT uptake were significantly increased in the hypothalamus of rats accustomed to a light/dark-inverted cycle (DL 10:14) and killed 6 h after the stopping of lighting in comparison to rats exposed to normal LD 14:10 cycles and killed 6 h after the beginning of lighting. Therefore, a circadian modification of the serotonergic presynaptic sites seems to be present and related to light/dark exposure. Because the existence of endogenous compounds able to modulate [3H]IMI binding and 5-HT uptake, other than 5-HT, has been postulated in the mammalian brain, the involvement of these substances in the periodic changes observed could be suggested.  相似文献   

6.
High- and Low-Affinity Binding of [3H]Imipramine in Mouse Cerebral Cortex   总被引:1,自引:0,他引:1  
Binding of [3H]imipramine in mouse cerebral cortex was found to be nonhomogeneous. Competition experiments, Scatchard analysis, and Hill plots are compatible with the existence of binding with high (nanomolar) and low (micromolar) affinity. Low-affinity binding could be eliminated by the use of low concentrations of imipramine as the competing ligand. In contrast to the high-affinity binding, the low-affinity binding was found to be unrelated to the neuronal uptake system for serotonin.  相似文献   

7.
In the rat hypothalamus [3H]imipramine binding is inhibited by tricyclic and nontricyclic antidepressant drugs in a complex manner, with biphasic curves and Hill coefficients less than 1.0. 5-Hydroxytryptamine (serotonin) inhibited with high affinity a decreasing proportion of the [3H]imipramine binding sites as the [3H]imipramine concentration was raised. In the absence of sodium ions, IC50 values for the inhibition by tricyclic and nontricyclic antidepressants were increased by approximately 1,000-fold, and the inhibition curves became classically monophasic with Hill coefficients close to 1.0. These data are interpreted as suggesting that [3H]imipramine binds to two independent sites in the rat hypothalamus. One site is sodium-dependent with a high affinity for the drugs tested; the other is sodium-independent and has a low affinity for these drugs.  相似文献   

8.
The characteristics of [3H]ouabain binding were examined in various areas of rat brain. In the striatum, Scatchard analysis revealed a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 10.4 +/- 0.9 nM and an estimated binding capacity (Bmax) of 7.6 +/- 1.9 pmol/mg protein. Similar monophasic Scatchard plots were found in the brainstem, cerebellum, hypothalamus, and frontal cerebral cortex. [3H]Ouabain binding to rat brain was sodium- and ATP-dependent and strongly inhibited by potassium. Proscillariden A was the most potent cardiac glycoside tested in inhibiting specific [3H]ouabain binding to brain membranes, and the rank order of inhibitory potencies for a series of cardiac glycosides was similar to that previously reported for inhibition of heart Na,K-ATPase. To assess whether the high-affinity binding sites for [3H]ouabain were localized to neuronal or nonneuronal membranes, the effect of discrete kainic acid lesions on striatal [3H]ouabain binding was examined. Kainic acid lesions of the striatum reduced [3H]ouabain binding to striatal homogenates by 79.6 +/- 1.6%. This suggests that the "high-affinity" [3H]ouabain binding sites measured in our experiments are localized to neuronal elements. Thus, the high-affinity binding of [3H]ouabain to brain membranes may selectively label a neuronal form or conformation of Na,K-ATPase.  相似文献   

9.
In vitro quantitative autoradiography of high-affinity [3H]imipramine binding sites was performed on 16 human brains postmortem. The densities of binding sites were highest in the hypothalamus. Next, in descending order, were the basal and lateral nuclei of the amygdala; substantia innominata; insular cortex; the central nucleus of the amygdala; the anterior nucleus of the thalamus; the head of the caudate nucleus; portions of the frontal, parietal, and temporal cortex; claustrum; the granular layer of the dentate gyrus; substantia nigra; the pyramidal layer of CA fields; globus pallidus; red nucleus; and white matter. Imipramine binding was found to increase with age in a region-specific manner. The presence of alcohol had a similar effect, which was most pronounced in the hippocampus. Sex and time from death to autopsy did not affect imipramine binding, in our sample.  相似文献   

10.
It was suggested in a recent report by Phillips et al. [J. Neurochem. 43, 479-486 (1984)] that the low-affinity binding of [3H]imipramine in the mouse cerebral cortex could in fact represent binding of [3H]imipramine to the GF/B glass fiber filters used to terminate the assays. The present study demonstrates that this is not the case and advances two lines of evidence: (a) For saturation analysis, mouse cerebrocortical membranes were incubated with [3H]imipramine concentrations between 0.8 nM and 3.6 microM, and parallel incubations were carried out with buffer replacing the brain membranes. The same low-affinity component, in addition to the high-affinity component, was present in the binding of [3H]imipramine to brain membranes plus GF/B filters (uncorrected data), and in that to brain membranes alone (corrected data). (b) Dissociation experiments, in which filter binding is equal for all samples and dissociation time is the only variable, clearly indicated the nonhomogeneity of [3H]imipramine binding. Our results, however, do show that binding to recently purchased GF/B filters is not a negligible phenomenon in saturation experiments. Relatively lower binding was found to GF/C, GF/F, Gelman A/E, and Reeves Angel 934 AH filters; pretreatment of GF/B filters with polyethyleneimine (PEI) reduced binding to a greater extent in the single manifold than in the cell harvester.  相似文献   

11.
The binding of [3H]indalpine (4-[2-(3-indolyl)]ethyl piperidine) to slide-mounted sections of rat brain has been characterized. This 5-hydroxytryptamine (5-HT) uptake blocker binds to sections with high affinity (KD approximately 1 nM). The binding is saturable, and can be displaced by the addition of clomipramine (1 microM). Other drugs inhibiting the uptake of 5-HT also have the capacity to inhibit the binding of [3H]indalpine. A significant correlation (r = 0.86) was found between the capacity of these compounds to inhibit the uptake of 5-HT and their potencies as inhibitors of [3H]indalpine binding. Binding was Na+ - and Cl- -dependent and was inhibited competitively by 5-HT. Furthermore, electrolytic lesions of the dorsal raphe or medial forebrain bundle, which cause a degeneration of 5-HT cell bodies and fibers, respectively, resulted in a 30-40% reduction in the binding of [3H]indalpine. [3H]Indalpine binds to the 5-HT uptake recognition sites in a different manner from imipramine-like compounds.  相似文献   

12.
High-Affinity [3H]Choline Accumulation in Cultured Human Skin Fibroblasts   总被引:1,自引:0,他引:1  
[3H]Choline can be transported across cell membranes by high-affinity (KT less than 5 microM) and low-affinity (KT much greater than 5 microM) systems. High-affinity choline accumulation (HACA) has been demonstrated in synaptosomes made from cholinergic brain regions such as the hippocampus and caudate-putamen. In cell culture, HACA has been demonstrated in glia and avian telencephalon, dissociated spinal cord, and muscle fibroblasts. We examined [3H]choline accumulation in a single normal human fibroblast line cultured from skin biopsy. [3H]Choline accumulation was temperature-dependent and linear with incubation time up to 6 min at 0.125 microM-choline. The apparent KT for [3H]choline was 5 microM, which is similar to that observed in avian fibroblasts. Isoosmotic replacement of Na+ with either Li+ (144 mM) or sucrose (288 mM) severely reduced [3H]choline accumulation (by 70-90%). Pre-incubation with ouabain (100 microM), sodium orthovanadate (100 microM), or 2,4-dinitrophenol (100 microM), or replacement of Ca2+ by Mg2+ had little or no effect on subsequent [3H]choline accumulation. [3H]Choline accumulation was inhibited by hemicholinium-3 (HC-3); after pre-incubation in HC-3 at 37 degrees C for 10 min, the IC50 (at 0.125 microM-choline) was 5.6 microM. The HC-3 sensitivity, Na+ dependence, and low KT suggest that human skin fibroblasts have a high-affinity transport system for choline.  相似文献   

13.
5-Methoxytryptoline potently inhibits [3H]imipramine binding to membranes from the cerebral cortex and platelets. Since 5-methoxytryptoline, which appears to occur endogenously with particularly high levels in the human pineal gland, also inhibits 5-hydroxytryptamine (5-HT, serotonin) uptake, it should be considered as a putative endogenous ligand modulating 5-HT transport. As the 5-HT transporter complex comprises the imipramine and the substrate recognition sites, which interact allosterically, it was essential to define the mechanism of inhibition of [3H]imipramine binding by 5-methoxytryptoline. Human platelets show an active and saturable uptake of 5-HT and tryptamine. The uptake of both substrates appears to be mediated by the same carrier and it is inhibited by 5-methoxytryptoline at submicromolar concentrations. 5-HT and tryptamine inhibit [3H]imipramine binding in human platelets with a Hill slope for inhibition close to unity and IC50 values of 3,265 and 3,475 nM, respectively. This inhibition is, however, not competitive because both 5-HT and tryptamine significantly decrease the rate of [3H]imipramine-receptor dissociation. Although 5-methoxytryptoline potently inhibits [3H]imipramine binding (IC50 = 44 nM) in human platelets with a Hill slope of unity, it does not affect the receptor-ligand dissociation rate of [3H]imipramine even at concentrations up to 100 microM. The present experiments show that 5-methoxytryptoline, in spite of its chemical similarity to the indoleamine transporter substrates, interacts with the imipramine receptor through a mechanism of competitive inhibition. This conclusion is supported by a selective effect of 5-methoxytryptoline on the Kd of [3H]imipramine binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Citalopram, a selective serotonin (5-HT) uptake inhibitor with antidepressant properties, was found to bind with high affinity to the 5-HT transporter from human neuronal and platelet membranes. At 20 degrees C, KD was about 1.5 nM in both tissues. [3H]Citalopram bound to rat neuronal membranes with higher affinity than to human neuronal and platelet membranes; at 20 degrees C KD was about 0.7 nM. The Bmax value for the binding of [3H]citalopram to platelet membranes was close to that found using the 5-HT uptake inhibitors [3H]imipramine and [3H]paroxetine, suggesting that all three 5-HT uptake inhibitors bind to the 5-HT transporter. The dissociation rate of [3H]citalopram increased twofold with each 4-5 degree C increase in temperature in both human and rat membranes, although at any given temperature, the dissociation rate was about four times faster in the human neuronal and platelet membranes than in rat neuronal membranes.  相似文献   

15.
Brain astroglial cells, whether from a bulk isolated preparation or in culture, have been shown to take up serotonin actively. [3H]imipramine has been proposed as a specific label for serotonin uptake sites in brain. We therefore studied the binding of [3H]imipramine to C6 astroglial cells in culture to determine if some of the binding of this radioligand in brain homogenates is actually to serotonin transporting sites on glia. [3H]Imipramine binds saturably (Bmax = 202 fmol/mg protein) and with high affinity (KD = 1.72 nM) to C6 cells. This binding is competitively inhibited by other tricyclic antidepressants. The C6 cells actively transport [3H]serotonin with a Km of 2 microM and a Vmax of 1080 fmol/10(6) cells/min. However, the pharmacological profile for inhibition of serotonin uptake does not correlate with the pharmacological profile for inhibition of [3H]imipramine binding. These results suggest that the binding of [3H]imipramine to astroglial cells is not related to their capacity for active uptake of serotonin. Further, in brain homogenates, some of the binding of [3H]imipramine may not be to neuronal uptake sites but rather may be to sites on astroglial cells.  相似文献   

16.
Tricyclic antidepressant drugs inhibit [3H]imipramine binding to the rat brain cortex in a competitive manner, giving linear Hofstee plots and Hill coefficients of approximately 1.0. Serotonin, the only neurotransmitter to inhibit [3H]imipramine binding, does so in a complex manner, exhibiting a Hill coefficient of 0.40-0.50. Nontricyclic inhibitors of serotonin uptake such as fluoxetine, paroxetine, norzimelidine, and citalopram inhibit [3H]imipramine binding in the same complex manner as serotonin. These results are interpreted as suggesting that [3H]imipramine binds to a site associated with the serotonin uptake system but different from either the substrate recognition site for serotonin or the site of action of the nontricyclic inhibitors of neuronal uptake of serotonin.  相似文献   

17.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

18.
The binding of [3H]neurotensin to membranes from human brain at 0 degrees C was specific, saturable, and reversible. In the frontal cortex, the equilibrium dissociation constant (KD) for [3H]neurotensin determined from the ratio of rate constants (k-1/k1), saturation isotherms, and inhibition binding experiments was 0.80, 2.0, and 2.0 nM, respectively, and the maximum number of binding sites (Bmax) from the saturation isotherms and the competitive binding experiments was 2.4 and 2.2 pmol/g of tissue, respectively. Hill coefficients for binding were equal to 1, indicating the presence of single, noncooperative binding sites. Inhibition of specific binding of [3H]-neurotensin by several analogs of neurotensin showed that [Gln4]neurotensin and neurotensin(8-13) had the highest affinities for these binding sites in human frontal cortex, with each analog being approximately 13-fold more potent than neurotensin. In addition, these data showed that the carboxy-terminal portion of neurotensin played an important part in the binding of this neuropeptide in human brain, a result described for other species. Regional distribution of binding sites was different from that reported for animal brains. Of the 33 different regions investigated, the uncus and substantia nigra showed the highest specific binding of [3H]neurotensin, whereas such areas as the pineal body, medulla, and corpus callosum had few binding sites.  相似文献   

19.
Abstract: [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4°C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of ~70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37°C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors. Although synaptosomal aniracetam binding sites may well be associated with AMPA-sensitive glutamate receptors, specifically bound [3H]aniracetam could not be displaced by cyclothiazide or GYKI 52466, which act as a positive and negative modulator of AMPA receptors, respectively.  相似文献   

20.
Abstract: The binding of L-[3H]aspartate was investigated in washed membranes prepared from whole rat brain. We were able to differentiate two separate binding sites differing in their Na dependence. The Na-independent binding was saturable, reversible, and optimal at 20°C and at pHs in the neutral range. The dissociation constant (Kd) at 20°C was about 200 n M . This binding site seemed to be modulated by magnesium and calcium at physiological concentrations. None of the amino acids tested was a potent competitor for Na-independent L-[3H]aspartate binding. This binding site was unevenly distributed in the rat central nervous system: cerebellum = cerebral cortex > ponsmedulla > spinal cord. Destruction of the intrinsic neurons of the cerebellum by injecting kainic acid 30 days before sacrifice resulted in a 53% reduction in Na-independent binding in this region. The Na-dependent binding of L-[3H]-aspartate (Kd= 484 n M ) was strongly inhibited by D-aspartate, L-glutamate, D,L-aspartate β-hydroxamate; was unaffected by calcium and magnesium; and showed a different pattern of distribution: cerebral cortex > cerebellum = pons-medulla = spinal cord. This binding in cerebellum was unaffected by injections of kainic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号