首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alcohol dehydrogenase (ADH) is a key enzyme in the production and utilization of alcohols. Some also catalyze the formation of carboxylate esters from alcohols and aldehydes. The ADH1 and ADH3 genes of Neurospora crassa FGSC2489 were cloned and expressed in recombinant Escherichia coli to investigate their alcohol dehydrogenation and carboxylate ester formation abilities. Homology analysis and sequence alignment of amino acid sequence indicated that ADH1 and ADH3 of N. crassa contained a zinc-binding consensus sequence and a NAD+-binding motif and showed 54–75% identity with fungi ADHs. N. crassa ADH1 was expressed in E. coli to give a specific activity of 289 ± 9 mU/mg using ethanol and NAD+ as substrate and cofactor, respectively. Corresponding experiments on the expression and activity of ADH3 gave 4 mU/mg of specific activity. N. crassa ADH1 preferred primary alcohols containing C3–C8 carbons to secondary alcohols such as 2-propanol and 2-butanol. N. crassa ADH1 possessed 5.3 mU/mg of specific carboxylate ester-forming activity accumulating 0.4 mM of ethyl acetate in 18 h. Substrate specificity of various linear alcohols and aldehydes indicated that short chain-length alcohols and aldehydes were good substrates for carboxylate ester production. N. crassa ADH1 was a primary alcohol dehydrogenase using cofactor NAD+ preferably and possessed carboxylate ester-forming activity with short chain alcohols and aldehydes.  相似文献   

2.
The thermotolerant methylotrophic yeast Hansenula polymorpha has recently been gaining interest as a promising host for bioethanol production due to its ability to ferment xylose, glucose, and cellobiose at elevated temperatures up to 48 °C. In this study, we identified and characterized alcohol dehydrogenase 1 of H. polymorpha (HpADH1). HpADH1 seems to be a cytoplasmic protein since no N-terminal mitochondrial targeting extension was detected. Compared to the ADHs of other yeasts, recombinant HpADH1 overexpressed in Escherichia coli exhibited much higher catalytic efficiency for ethanol oxidation along with similar levels of acetaldehyde reduction. HpADH1 showed broad substrate specificity for alcohol oxidation but had an apparent preference for medium chain length alcohols. Both ADH isozyme pattern analysis and ADH activity assay indicated that ADH1 is the major ADH in H. polymorpha DL-1. Moreover, an HpADH1-deleted mutant strain produced less ethanol in glucose or glycerol media compared to wild-type. Interestingly, when the ADH1 mutant was complemented with an HpADH1 expression cassette, the resulting strain produced significantly increased amounts of ethanol compared to wild-type, up to 36.7 g l−1. Taken together, our results suggest that optimization of ADH1 expression would be an ideal method for developing H. polymorpha into an efficient bioethanol production strain.  相似文献   

3.
A bacterial strain that can utilize several kinds of alcohols as its sole carbon and energy sources was isolated from soil and tentatively identified as Pseudomonas putida HK5. Three distinct dye-linked alcohol dehydrogenases (ADHs), each of which contained the prosthetic group pyrroloquinoline quinone (PQQ), were formed in the soluble fractions of this strain grown on different alcohols. ADH I was formed most abundantly in the cells grown on ethanol and was similar to the quinoprotein ADH reported for P. putida (H. Görisch and M. Rupp, Antonie Leeuwenhoek 56:35-45, 1989) except for its isoelectric point. The other two ADHs, ADH IIB and ADH IIG, were formed separately in the cells grown on 1-butanol and 1,2-propanediol, respectively. Both of these enzymes contained heme c in addition to PQQ and functioned as quinohemoprotein dehydrogenases. Potassium ferricyanide was an available electron acceptor for ADHs IIB and IIG but not for ADH I. The molecular weights were estimated to be 69,000 for ADH IIB and 72,000 for ADH IIG, and both enzymes were shown to be monomers. Antibodies raised against each of the purified ADHs could distinguish the ADHs from one another. Immunoblot analysis showed that ADH I was detected in cells grown on each alcohol tested, but ethanol was the most effective inducer. ADH IIB was formed in the cells grown on alcohols of medium chain length and also on 1,3-butanediol. Induction of ADH IIG was restricted to 1,2-propanediol or glycerol, of which the former alcohol was more effective. These results from immunoblot analysis correlated well with the substrate specificities of the respective enzymes. Thus, three distinct quinoprotein ADHs were shown to be synthesized by a single bacterium under different growth conditions.  相似文献   

4.
Re-engineering Escherichia coli for ethanol production   总被引:2,自引:1,他引:1  
A lactate producing derivative of Escherichia coli KO11, strain SZ110, was re-engineered for ethanol production by deleting genes encoding all fermentative routes for NADH and randomly inserting a promoterless mini-Tn5 cassette (transpososome) containing the complete Zymomonas mobilis ethanol pathway (pdc, adhA, and adhB) into the chromosome. By selecting for fermentative growth in mineral salts medium containing xylose, a highly productive strain was isolated in which the ethanol cassette had been integrated behind the rrlE promoter, designated strain LY160 (KO11, Δfrd::celY Ec ΔadhE ΔldhA, ΔackA lacA::casAB Ko rrlE::(pdc Zm -adhA Zm -adhB Zm -FRT-rrlE) pflB + ). This strain fermented 9% (w/v) xylose to 4% (w/v) ethanol in 48 h in mineral salts medium, nearly equal to the performance of KO11 with Luria broth.  相似文献   

5.
We isolated several thermotolerant Acetobacter species of which MSU10 strain, identified as Acetobacter pasteurianus, could grow well on agar plates at 41°C, tolerate to 1.5% acetic acid or 4% ethanol at 39°C, similarly seen with A. pasteurianus SKU1108 previously isolated. The MSU10 strain showed higher acetic acid productivity in a medium containing 6% ethanol at 37°C than SKU1108 while SKU1108 strain could accumulate more acetic acid in a medium supplemented with 4–5% ethanol at the same temperature. The fermentation ability at 37°C of these thermotolerant strains was superior to that of mesophilic A. pasteurianus IFO3191 strain having weak growth and very delayed acetic acid production at 37°C even at 4% ethanol. Alcohol dehydrogenases (ADHs) were purified from MSU10, SKU1108, and IFO3191 strains, and their properties were compared related to the thermotolerance. ADH of the thermotolerant strains had a little higher optimal temperature and heat stability than that of mesophilic IFO3191. More critically, ADHs from MSU10 and SKU1108 strains exhibited a higher resistance to ethanol and acetic acid than IFO3191 enzyme at elevated temperature. Furthermore, in this study, the ADH genes were cloned, and the amino acid sequences of ADH subunit I, subunit II, and subunit III were compared. The difference in the amino acid residues could be seen, seemingly related to the thermotolerance, between MSU10 or SKU1108 ADH and IFO 3191 ADH.  相似文献   

6.
Summary A mutant strain of Thermoanaerobacter ethanolicus (ATCC 31 550) designated JW200 Fe 4 contains primary and secondary alcohol dehydrogenases (ADHs). The primary ADH from JW000 Fe 4 was formed early in the growth cycle compared to the primary ADH form the wild-type strain (JW200 wt). The secondary ADH displayed 2.5-fold greater activity during the growth cycle of JW200 Fe 4 compared to the secondary ADH form JW200 wt. Both primary and secondary ADHs from JW200 Fe 4 were purified to homogeneity ADHs from JW200 Fe 4 were purified to homogeneity as determined by sodium dodecyl sulphate-gel electrophoresis. Relative molecular weight estimations indicated that both ADHs were tetrameric. Each ADH from JW200 Fe 4 contained approximately four Zn atoms per subunit and displayed Arrhenius plots similar to the ADHs from JW200 wt. The substrate specificity for the ADHs from JW200 Fe 4 was similar to that of the ADHs from JW200 wt. The secondary ADH oxidized 2-propanol at 51 times the rate of ethanol. Both ADHs from JW200 Fe 4 apparently reduce acetaldehyde to ethanol while only the secondary ADH from JW200 wt was suggested to contribute significantly to ethanol production.  相似文献   

7.
The developmental program of alcohol dehydrogenase (ADH) activity in the scutellum of maize strain R6-67 is different from that of W64A. The level of scutellar ADH activity in R6-67 remains relatively high during the course of early sporophytic development as compared to the commonly observed pattern. In the typical inbred strain W64A, the activity of ADH declines substantially during that period. The variance values from the crosses between R6-67 and W64A reveal that the trait is under genetic control. Detailed genetic analysis suggests that a single gene is responsible for the altered developmental program of ADH activity in R6-67. This gene meets the criteria for temporal regulatory genes and is different from Adh2, the structural gene which codes the ADH-2 isozyme. We have designated this gene as Adr1 (alcohol dehydrogenase regulator, #1). Adr1 is unlinked to Adh2. There is no de novo synthesis of ADH in the scutellum during germination, and the difference in the activity level reflects the difference in the amount of enzyme protein as demonstrated by density labeling and rocket immunoelectrophoresis. Thus, it appears that Adr1 may regulate the degradation of ADH.  相似文献   

8.
A membrane-bound, pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) was purified from Frateuria aurantia LMG 1558T. Although F. aurantia belongs to a group of γ-Proteobacteria, the characteristics of its PQQ-ADH were similar to the enzyme characteristics of the typical high-acetic acid-resistant bacterium Gluconacetobacter europaeus from the group of α-Proteobacteria. The PQQ-dependent ADH was solubilized from the membranes and purified after anionic, cationic, and affinity chromatography with specific activity of 117 U/mg. The purified enzyme was estimated to be composed of two subunits of ca. 72 and 45 kDa, as judged by SDS-polyacrylamide gel electrophoresis. The purified enzyme had maximum activity at pH 4.5 and showed the highest substrate specificity to ethanol, isoamyl alcohol, 1-butanol, and 1-propanol. The deduced sequences of cloned genes adhA and adhB encoding subunits I and II of PQQ-ADH showed 80 % amino acid (AA) identity to AdhA and 68 % AA identity to AdhB of Ga. europaeus V3 (LMG 18494). Because of the high similarity between genes encoding subunits I and II of PQQ-ADH and its homologous genes found in a distantly related taxonomic group of acetic acid bacteria, the results suggest the possibility of horizontal gene transfer between these two groups of genera.  相似文献   

9.
Alcohol dehydrogenases (ADH) participate in the biosynthetic pathway of aroma volatiles in fruit by interconverting aldehydes to alcohols and providing substrates for the formation of esters. Two highly divergent ADH genes (15% identity at the amino acid level) of Cantaloupe Charentais melon (Cucumis melo var. Cantalupensis) have been isolated. Cm-ADH1 belongs to the medium-chain zinc-binding type of ADHs and is highly similar to all ADH genes expressed in fruit isolated so far. Cm-ADH2 belongs to the short-chain type of ADHs. The two encoded proteins are enzymatically active upon expression in yeast. Cm-ADH1 has strong preference for NAPDH as a co-factor, whereas Cm-ADH2 preferentially uses NADH. Both Cm-ADH proteins are much more active as reductases with K ms 10–20 times lower for the conversion of aldehydes to alcohols than for the dehydrogenation of alcohols to aldehydes. They both show strong preference for aliphatic aldehydes but Cm-ADH1 is capable of reducing branched aldehydes such as 3-methylbutyraldehyde, whereas Cm-ADH2 cannot. Both Cm-ADH genes are expressed specifically in fruit and up-regulated during ripening. Gene expression as well as total ADH activity are strongly inhibited in antisense ACC oxidase melons and in melon fruit treated with the ethylene antagonist 1-methylcyclopropene (1-MCP), indicating a positive regulation by ethylene. These data suggest that each of the Cm-ADH protein plays a specific role in the regulation of aroma biosynthesis in melon fruit. Daniel Manríquez and Islam El-Sharkawy contributed equally to the work. Accession numbers for Cm-ADH1 (ABC02081), and Cm-ADH2 (ABC02082).  相似文献   

10.
High NAD-dependent alcohol dehydrogenase (ADH) activity was found in the cytoplasm when a membrane-bound, quinoprotein, ADH-deficient mutant strain of Acetobacter pasteurianus SKU1108 was grown on ethanol. Two NAD-dependent ADHs were separated and purified from the supernatant fraction of the cells. One (ADH I) is a trimer, consisting of an identical subunit of 42 kDa, while the other (ADH II) is a homodimer, having a subunit of 31 kDa. One of the two ADHs, ADH II, easily lost the activity during the column chromatographies, which could be stabilized by the addition of DTT and MgCl2 in the column buffer. ADH I but not ADH II contained approximately one zinc atom per subunit. The N-terminal amino acid analysis indicated that ADH I and ADH II have homology to the long-chain and short-chain ADH families, respectively. ADH I showed a preference for primary alcohols, while ADH II had a preference for secondary alcohols. The two ADHs showed clear difference in their kinetics on ethanol, acetaldehyde, NAD, and NADH. The physiological function of both ADH I and ADH II are also discussed.  相似文献   

11.
A soluble NAD-dependent alcohol dehydrogenase (ADH) activity was detected in mycelium and yeast cells of wild-type Mucor rouxii. In the mycelium of cells grown in the absence of oxygen, the enzyme activity was high, whereas in yeast cells, ADH activity was high regardless of the presence or absence of oxygen. The enzyme from aerobically or anaerobically grown mycelium or yeast cells exhibited a similar optimum pH for the oxidation of ethanol to acetaldehyde (∼pH 8.5) and for the reduction of acetaldehyde to ethanol (∼pH 7.5). Zymogram analysis conducted with cell-free extracts of the wild-type and an alcohol-dehydrogenase-deficient mutant strain indicated the existence of a single ADH enzyme that was independent of the developmental stage of dimorphism, the growth atmosphere, or the carbon source in the growth medium. Purified ADH from aerobically grown mycelium was found to be a tetramer consisting of subunits of 43 kDa. The enzyme oxidized primary and secondary alcohols, although much higher activity was displayed with primary alcohols. K m values obtained for acetaldehyde, ethanol, NADH2, and NAD+ indicated that physiologically the enzyme works mainly in the reduction of acetaldehyde to ethanol. Received: 11 March 1999 / Accepted: 14 July 1999  相似文献   

12.
Kärkönen A  Fry SC 《Planta》2006,223(4):858-870
UDP-glucose dehydrogenase (UDPGDH) activity was detected in extracts of maize cell-cultures and developing leaves. The reaction product was confirmed as UDP-glucuronate. Leaf extracts from null mutants defective in one or both of the ethanol dehydrogenase genes, ADH1 and ADH2, had similar UDPGDH activities to wild-type, showing that UDPGDH activity is not primarily due to ADH proteins. The mutants showed no defect in their wall matrix pentose:galactose ratios, or matrix:cellulose ratio, showing that ADHs were not required for normal wall biosynthesis. The majority of maize leaf UDPGDH activity had K m (for UDP-glucose) 0.5–1.0 mM; there was also a minor activity with an unusually high K m of >50 mM. In extracts of cultured cells, kinetic data indicated at least three UDPGDHs, with K m values (for UDP-glucose) of roughly 0.027, 2.8 and >50 mM (designated enzymes EL, EM and EH respectively). EM was the single major contributor to extractable UDPGDH activity when assayed at 0.6–9.0 mM UDP-Glc. Most studies, in other plant species, had reported only EL-like isoforms. Ethanol (100 mM) partially inhibited UDPGDH activity assayed at low, but not high, UDP-glucose concentrations, supporting the conclusion that at least EH activity is not due to ADH. At 30 μM UDP-glucose, 20–150 μM UDP-xylose inhibited UDPGDH activity, whereas 5–15 μM UDP-xylose promoted it. In conclusion, several very different UDPGDH isoenzymes contribute to UDP-glucuronate and hence wall matrix biosynthesis in maize, but ADHs are not responsible for these activities.  相似文献   

13.
The asymmetric reduction of ketones is one of the most promising processes for producing chiral alcohols. However, dehydrogenases or reductases that can catalyze the reduction of ketones to give anti-Prelog chiral alcohols have been limited to some NADP+/NADPH-dependent enzymes. Recently, we reported a novel NAD+/NADH-dependent alcohol dehydrogenase (ADH) from Leifsonia sp. and Pseudomonas ADH homologs from soil metagenomes. Moreover, we have established an efficient hydrogen-transfer bioreduction process with 2-propanol as a hydrogen donor using Leifsonia ADH. This review focuses on the recent development of novel ADHs for producing industrially useful anti-Prelog chiral alcohols from various ketones.  相似文献   

14.
Biofuels synthesized from renewable resources are of increasing interest because of global energy and environmental problems. We have previously demonstrated production of higher alcohols from Escherichia coli using a 2-keto acid-based pathway. Here, we have compared the effect of various alcohol dehydrogenases (ADH) for the last step of the isobutanol production. E. coli has the yqhD gene which encodes a broad-range ADH. Isobutanol production significantly decreased with the deletion of yqhD, suggesting that the yqhD gene on the genome contributed to isobutanol production. The adh genes of two bacteria and one yeast were also compared in E. coli harboring the isobutanol synthesis pathway. Overexpression of yqhD or adhA in E. coli showed better production than ADH2, a result confirmed by activity measurements with isobutyraldehyde.  相似文献   

15.
The final activity of the alcohol dehydrogenase (E.C.1.1.1.1, abbreviated ADH) from germinating pea, isolated by fractionating with ammonium sulphate, chromatography on DEAE cellulose and gel filtration, was 80,000, from bean 25,000 and from lentil 13,500 units per mg protein. Molecular weights of the ADHs are close to each other: pea and bean ADH 60,000, lentil ADH 70,000. The Km values are mutually similar with three enzymes, i.e. of the order of 10−4M for NAD and 10−2M for ethanol. The pH optima lie in the alkaline region. These enzymes catalyse oxidation of a number of monovalent alcohols. At temperatures above 60°C the enzymes are thermally unstable. Stability is enhanced slowly by ethanol but not by NAD. Pyrazol, imidazol and pyridine inhibit plant ADH similarly to the enzyme from horse liver. There is a similarity between plant alcohol dehydrogenases and animal and yeast enzymes.  相似文献   

16.
The gene encoding a thermostable iron-containing alcohol dehydrogenase from Thermococcus Strain ES1 (ES1 ADH) was cloned, sequenced and expressed in Escherichia coli. The recombinant and native ES1 ADHs were purified using multistep column chromatography under anaerobic conditions. Both enzymes appeared to be homotetramers with a subunit size of 45 ± 1 kDa as revealed by SDS-PAGE, which was close to the calculated value (44.8 kDa). The recombinant ADH contained 1.0 ± 0.1 g-atom iron per subunit. Both enzymes were sensitive to oxygen with a half-life upon exposure to air of about 4 min. The recombinant enzyme exhibited a specific activity of 105 ± 2 U mg−1, which was very similar to that of the native enzyme (110 ± 3 U mg−1). The optimal pH-values for both enzymes for ethanol oxidation and acetaldehyde reduction were 10.4 and 7.0, respectively. Both enzymes also showed similar temperature-dependent activities, and catalyzed the oxidation of primary alcohols, but there was no activity towards methanol and secondary alcohols. Kinetic parameters of the enzymes showed lower K m-values for acetaldehyde and NADPH and higher K m-values for ethanol and NADP+. It is concluded that the gene encoding ES1 ADH was expressed successfully in E. coli. This is the first report of a fully active recombinant version of an iron-containing ADH from a hyperthermophile.  相似文献   

17.
ABSTRACT. Euglena gracilis is a freshwater free‐living organism able to grow with ethanol as carbon source; to facilitate this metabolism several alcohol dehydrogenase (ADH) activities have been detected. We report the gene cloning, over‐expression, and biochemical characterization of a medium‐chain NAD+‐dependent ADH from E. gracilis (EgADH). The enzyme's amino acid sequence displayed the highest percentages of similarity and identity with ADHs of bacteria and fungi. In the predicted three‐dimensional model, all the residues involved in Zn2+, cofactor, and substrate binding were conserved. A conventional signal peptide for import into mitochondria could not be clearly identified. The protein of 37 kDa was over‐expressed, purified to homogeneity, and kinetically characterized. The enzyme's optimal pH was 7.0 for ethanol oxidation displaying a Vm of 11.7±3.6 U/mg protein and a Km of 3.2±0.7 mM for this substrate. Isopropanol and isopentanol were also utilized, although with less efficiency. It showed specificity for NAD+ with a Km value of 0.39±0.1 mM and Mg2+ or Zn2+ were essential for activity. The recombinant EgADH reported here may help to elucidate the roles that different ADHs have on the metabolism of short‐ and long‐chain alcohols in this microorganism.  相似文献   

18.
Methylated polycyclic aromatic hydrocarbons can be metabolically activated via benzylic hydroxylation and sulpho conjugation to reactive esters, which can induce mutations and tumours. Yet, further oxidation of the alcohol may compete with this toxification. We previously demonstrated that several human alcohol dehydrogenases (ADH1C, 2, 3 and 4) oxidise various benzylic alcohols (derived from alkylated pyrenes) to their aldehydes with high catalytic efficiency. However, all these ADHs also catalysed the reverse reaction, the reduction of the aldehydes to the alcohols, with comparable or higher efficiency. Thus, final detoxification requires elimination of the aldehydes by further biotransformation. We have expressed two human aldehyde dehydrogenases (ALDH2 and 3A1) in bacteria. All pyrene aldehydes studied (1-, 2- and 4-formylpyrene, 1-formyl-6-methylpyrene and 1-formyl-8-methylpyrene) were high-affinity substrates for ALDH2 (Km = 0.027–0.9 μM) as well as ALDH3A1 (Km = 0.78–11 μM). Catalytic efficiencies (kcat/Km) were higher for ALDH2 than ALDH3A1 by a moderate to a very large margin depending on the substrate. Most important, they were also substantially higher than the catalytic efficiencies of the various ADHs for the reduction the aldehydes to the alcohols. These kinetic properties ensure that ALDHs, and particularly ALDH2, can complete the ADH-mediated detoxification.  相似文献   

19.
BLAT (BLAST-Like Alignment Tool) analyses and interrogations of the recently published opossum genome were undertaken using previously reported rat ADH amino acid sequences. Evidence is presented for six opossum ADH genes localized on chromosome 5 and organized in a comparable ADH gene cluster to that reported for human and rat ADH genes. The predicted amino acid sequences and secondary structures for the opossum ADH subunits and the intron-exon boundaries for opossum ADH genes showed a high degree of similarity with other mammalian ADHs, and four opossum ADH classes were identified, namely ADH1, ADH3, ADH6 and ADH4 (for which three genes were observed: ADH4A, ADH4B and ADH4C). Previous biochemical analyses of opossum ADHs have reported the tissue distribution and properties for these enzymes: ADH1, the major liver enzyme; ADH3, widely distributed in opossum tissues with similar kinetic properties to mammalian class 3 ADHs; and ADH4, for which several forms were localized in extrahepatic tissues, especially in the digestive system and in the eye. These ADHs are likely to perform similar functions to those reported for other mammalian ADHs in the metabolism of ingested and endogenous alcohols and aldehydes. Phylogenetic analyses examined opossum, human, rat, chicken and cod ADHs, and supported the proposed designation of opossum ADHs as class I (ADH1), class III (ADH3), class IV (ADH4A, ADH4B and ADH4C) and class VI (ADH6). Percentage substitution rates were examined for ADHs during vertebrate evolution which indicated that ADH3 is evolving at a much slower rate to that of the other ADH classes.  相似文献   

20.
Rhodococcus strain I24 is able to convert indene into indandiol via the actions of at least two dioxygenase systems and a putative monooxygenase system. We have identified a cosmid clone from I24 genomic DNA that is able to confer the ability to convert indene to indandiol upon Rhodococcus erythropolis SQ1, a strain that normally can not convert or metabolize indene. HPLC analysis reveals that the transformed SQ1 strain produces cis-(1R,2S)-indandiol, suggesting that the cosmid clone encodes a naphthalene-type dioxygenase. DNA sequence analysis of a portion of this clone confirmed the presence of genes for the dioxygenase as well as genes encoding a dehydrogenase and putative aldolase. These genes will be useful for manipulating indene bioconversion in Rhodococcus strain I24. Received: 8 December 1998 / Received revision: 26 January 1999 / Accepted: 5 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号