首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Passive efflux of42K or86Rb from differentiated mouse neuroblastoma cells in culture was stimulated up to 8-fold by 10?4 M veratridine. The increased efflux could be blockedby low concentrations of tetrodotoxin (Ki = 4×10?9 g/ml), and did not occur with other cell types lacking an excitable membrane. The temperature sensitivity of the activated component was much higher than that of the normal passive outflow. It is suggested that the veratridine-dependent, tetrodotoxin-sensitive efflux represents passage of ions through the excitable Na+ channel. Replacement of extracellular Na+ by Tris+ abolished the activation by veratridine. Titration of the Na+ requirement resulted in a hyperbolic relationship between external Na+ concentration and efflux rate, with an apparent Km of 66.7 mM for Na+. This phenomenon may reflect an interaction between extracellular ions and a regulatory site on the Na+ channel.  相似文献   

2.
The activity of neurotoxin-responsive Na+ channels in mouse neuroblastoma cells, N-18, was examined after treating the cells with compounds that are reported to perturb intracellular traffic. The compounds used have been shown to either alter glycoprotein synthesis and processing, (swainsonine, castanospermine, monensin, and retinoic acid) or receptor mediated endocytosis (mevinolin, 7-ketocholesterol, and chloroquine), or both. All of these compounds inhibited the activity of the neurotoxin-responsive Na+ channel with the exception of retinoic acid which increased the activity. Na+ channel activity was measured by two methods: (a) In vivo, the efflux of 86Rb was measured by use of the cells in monolayer culture, and (b) in vitro, the flux of 86Rb was measured from artificial phospholipid vesicles containing the partially purified Na+ channel. In both cases, 86Rb flux responded to stimulating neurotoxins, veratridine and scorpion venom, and was inhibited by tetrodotoxin as characteristic of excitable membranes. One of the perturbing compounds, swainsonine, was examined in detail. Treatment of N-18 cells with 10 microM swainsonine for 24 h markedly reduced the activity of the neurotoxin-responsive Na+ channel, as shown by the neurotoxin-stimulated efflux of 86Rb in vivo. In addition, after reconstitution into phospholipid vesicles of the partially purified Na+ channel from swainsonine-treated cells, reduced 86Rb flux was observed when compared with that of nontreated cells. Furthermore, the activity was not recovered in other less purified fractions. A comparison of the glycopeptides from the treated and nontreated cells by size, charge, and lectin-binding affinities was consistent with the formation of hybrid oligosaccharides after swainsonine treatment. It is concluded that the oligosaccharide residues of the Na+ channel glycoprotein must be processed to the mature complex-type for full activity. The stimulation of channel activity by treatment with retinoic acid supported this conclusion.  相似文献   

3.
Summary The influence of K+ on the Na+ fluxes of barley root cells was investigated. A increased K+ concentration (K+ influx) results in a transient increase of the plasmalemma efflux of Na+ followed by a decrease, and in a decrease of the cytoplasmic content and the tonoplast influx of Na+. These results are consistent with a Na-K-pump at the plasmalemma.  相似文献   

4.
Changes of 42K efflux (J23K) caused by ouabain and/or furosemide were measured in isolated epithelia of frog skin. From the kinetics of 42K influx (J32K) studied first over 8-9 h, K+ appeared to be distributed into readily and poorly exchangeable cellular pools of K+. The readily exchangeable pool of K+ was increased by amiloride and decreased by ouabain and/or K+-free extracellular Ringer solution. 42K efflux studies were carried out with tissues shortcircuited in chambers. Ouabain caused an immediate (less than 1 min) increase of the 42K efflux to approximately 174% of control in tissues incubated either in SO4-Ringer solution or in Cl-Ringer solution containing furosemide. Whereas furosemide had no effect on J23K in control tissues bathed in Cl-rich or Cl-free solutions, ouabain induced a furosemide-inhibitable and time-dependent increase of a neutral Cl-dependent component of the J23K. Electroconductive K+ transport occurred via a single-filing K+ channel with an n' of 2.9 K+ efflux before ouabain, normalized to post-ouabain (+/- furosemide) values of short-circuit current, averaged 8-10 microA/cm2. In agreement with the conclusions of the preceding article, the macroscopic stoichiometry of ouabain-inhibitable Na+/K+ exchange by the pump was variable, ranging between 1.7 and 7.2. With increasing rates of transepithelial Na+ transport, pump-mediated K+ influx saturated, whereas Na+ efflux continued to increase with increases of pump current. In the usual range of transepithelial Na+ transport, regulation of Na+ transport occurs via changes of pump-mediated Na+ efflux, with no obligatory coupling to pump-mediated K+ influx.  相似文献   

5.
The Na+ pump (Na+, K+-ATPase) has been implicated in the regulation of many cellular functions, including cell volume regulation. The effects of inhibiting Na+ pump activity on cell volume and taurine efflux were evaluated in the human neuroblastoma cell line CHP-100. Cell volume changes monitored with the Coulter Multisizer technique and confocal microscopy showed that neuroblastoma cells exposed to ouabain swelled by 22 ± 4% (n = 5). The rapid cell swelling was followed by regulatory volume decrease (RVD). In cells treated with ouabain, 14C-taurine efflux increased by 183 ± 11% compared with controls. However, cells exposed simultaneously to ouabain and hypoosmotic solution resulted in a 14C-taurine efflux of 207 ± 18%. Western blot and immunofluorescence microscopy with specific monoclonal antibodies for the catalytic α isoforms of Na+, K+-ATPase demonstrated high levels of the ubiquitously expressed α1 and the neuronal-specific α3. Ouabain-binding data showed that CHP-100 cells express ∼3 × 105 pump units/cell. The present data indicate that efflux of taurine may be involved during volume recovery subsequent to blockade of Na+, K+-ATPase in CHP-100 cells. J. Cell. Physiol. 174:145–153, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
A furosemide-sensitive, ouabain-insensitive [86Rb+] uptake is described in glioma cells in culture which is dependent upon external Na+, K+, and Cl? concentrations. This transport activity was also inhibited by bumetanide at 100-fold lower concentrations than furosemide. Furosemide-sensitive swelling of glioma cells is demonstrated and this activity is dependent upon external Na+ and K+ in a manner similar to [86Rb+] uptake. This transport activity was not detected in neuroblastoma cells and the possible relevance of these findings to extracellular K+ buffering by glia is discussed.  相似文献   

7.
Dryer SE 《Neuron》2003,37(5):727-728
Progress in understanding sodium-activated potassium channels (K(Na)), suggested to function in excitable cells both during physiological conditions and protectively during hypoxia, has been limited by their unknown molecular identity. In this issue of Neuron, Salkoff and coworkers now show that members of the Slo gene family, Slo2.1 and Slo2.2, encode functional K(Na) channels.  相似文献   

8.
Conduction of ions through the NaK channel, with M0 helix removed, was studied using both Brownian dynamics and molecular dynamics. Brownian dynamics simulations predict that the truncated NaK has approximately a third of the conductance of the related KcsA K+ channel, is outwardly rectifying, and has a Michaelis-Menten current-concentration relationship. Current magnitude increases when the glutamine residue located near the intracellular gate is replaced with a glutamate residue. The channel is blocked by extracellular Ca2+. Molecular dynamics simulations show that, under the influence of a strong applied potential, both Na+ and K+ move across the selectivity filter, although conduction rates for Na+ ions are somewhat lower. The mechanism of conduction of Na+ differs significantly from that of K+ in that Na+ is preferentially coordinated by single planes of pore-lining carbonyl oxygens, instead of two planes as in the usual K+ binding sites. The water-containing filter pocket resulting from a single change in the selectivity filter sequence (compared to potassium channels) disrupts several of the planes of carbonyl oxygens, and thus reduces the filter's ability to discriminate against sodium.  相似文献   

9.
Summary The influence of K+ ions on the net Na+ fluxes in cells of excised barley roots (Hordeum distichon L.) and roots of whole barley plants was investigated. The fluxes were determined by flame photometry in the external solution. In both cases a transient net Na+ efflux against the external Na+ concentration was observed upon addition of K+. The results stress the effectiveness of the K+-dependent Na+ efflux mechanism residing at the plasmalemma, and its involvement in K–Na-selectivity in whole barley plants.  相似文献   

10.
Na+ efflux across basolateral membranes of isolated epithelia of frog skin was tested for voltage sensitivity. The intracellular Na+ transport pool was loaded with 24Na from the apical solution and the rate of isotope appearance in the basolateral solution (JNa23) was measured at timed intervals of 30 s. Basolateral membrane voltage was depolarized by either 50 mM K+, 5 mM Ba++, or 80 mM NH+4. Whereas within 30 s ouabain caused inhibition of JNa23, depolarization of Vb by 30-60 mV caused no significant change of JNa23. Thus, both pump-mediated and leak Na+ effluxes were voltage independent. Although the pumps are electrogenic, pump-mediated Na+ efflux is voltage independent, perhaps because of a nonlinear relationship between pump current and transmembrane voltage. Voltage independence of the leak Na+ efflux confirms a previous suggestion (Cox and Helman, 1983. American Journal of Physiology. 245:F312-F321) that basolateral membrane Na+ leak fluxes are electroneutral.  相似文献   

11.
12.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

13.
The effects of internally applied 1 mM vanadate on the Na+ efflux in dialysed squid axons were found to depend on the presence of external K+. In K+-free artificial sea water, vanadate did not produce any change in the rate of Na+ efflux, whereas in the presence of 10 mM K+ the Na+ efflux was reduced to values even lower than those observed in the absence of K+ (inversion of the K+-free effect). In vanadate-poisoned axons, K+ and NH4+ at low concentrations activated Na+ efflux, but at high concentrations both cations were inhibitory. However, NH4+ was always a better activator and a poorer inhibitor than K+.  相似文献   

14.
In whole-cell patch clamp recordings from chick dorsal root ganglion neurons, removal of intracellular K+ resulted in the appearance of a large, voltage-dependent inward tail current (Icat). Icat was not Ca2+ dependent and was not blocked by Cd2+, but was blocked by Ba2+. The reversal potential for Icat shifted with the Nernst potential for [Na+]. The channel responsible for Icat had a cation permeability sequence of Na+ >> Li+ >> TMA+ > NMG+ (PX/PNa = 1:0.33:0.1:0) and was impermeable to Cl-. Addition of high intracellular concentrations of K+, Cs+, or Rb+ prevented the occurrence of Icat. Inhibition of Icat by intracellular K+ was voltage dependent, with an IC50 that ranged from 3.0-8.9 mM at membrane potentials between -50 and -110 mV. This voltage- dependent shift in IC50 (e-fold per 52 mV) is consistent with a single cation binding site approximately 50% of the distance into the membrane field. Icat displayed anomolous mole fraction behavior with respect to Na+ and K+; Icat was inhibited by 5 mM extracellular K+ in the presence of 160 mM Na+ and potentiated by equimolar substitution of 80 mM K+ for Na+. The percent inhibition produced by both extracellular and intracellular K+ at 5 mM was identical. Reversal potential measurements revealed that K+ was 65-105 times more permeant than Na+ through the Icat channel. Icat exhibited the same voltage and time dependence of inactivation, the same voltage dependence of activation, and the same macroscopic conductance as the delayed rectifier K+ current in these neurons. We conclude that Icat is a Na+ current that passes through a delayed rectifier K+ channel when intracellular K+ is reduced to below 30 mM. At intracellular K+ concentrations between 1 and 30 mM, PK/PNa remained constant while the conductance at -50 mV varied from 80 to 0% of maximum. These data suggest that the high selectivity of these channels for K+ over Na+ is due to the inability of Na+ to compete with K+ for an intracellular binding site, rather than a barrier that excludes Na+ from entry into the channel or a barrier such as a selectivity filter that prevents Na+ ions from passing through the channel.  相似文献   

15.
Summary We have examined the effect of internal and external pH on Na+ transport across toad bladder membrane vesicles. Vesicles prepared and assayed with a recently modified procedure (Garty & Asher, 1985) exhibit large, rheogenic, amiloridesensitive fluxes. Of the total22Na uptake measured 0.5–2.0 min after introducing tracer, 80±4% (mean±se,n=9) is blocked by the diuretic with aK 1 of 2×10–8 m. Thus, this amiloridesensitive flux is mediated by the apical sodium-selective channels. Varying the internal (cytosolic) pH over the physiologic range 7.0–8.0 had no effect on sodium transport; this result suggests that variation of intracellular pHin vivo has no direct apical effect on modulating sodium uptake. On the other hand,22Na was directly and monotonically dependent on external pH. External acidification also reduced the amiloride-sensitive efflux across the walls of the vesicles. This inhibition of22Na efflux was noted at external Na+ concentrations of both 0.2 m and 53mm.These results are different from those reported with whole toad bladder. A number of possible bases for these differences are considered and discussed. We suggest that the natriferic response induced by mucosal acidification of whole toad urinary bladder appears to operate indirectly through one or more factors, presumably cytosolic, present in whole cells and absent from the vesicles.  相似文献   

16.
Muscarinic potassium channels (KACh) are composed of two subunits, GIRK1 and GIRK4 (or CIR), and are directly gated by G proteins. We have identified a novel gating mechanism of KACh, independent of G-protein activation. This mechanism involved functional modification of KACh which required hydrolysis of physiological levels of intracellular ATP and was manifested by an increase in the channel mean open time. The ATP-modified channels could in turn be gated by intracellular Na+, starting at approximately 3 mM with an EC50 of approximately 40 mM. The Na(+)-gating of KACh was operative both in native atrial cells and in a heterologous system expressing recombinant channel subunits. Block of the Na+/K+ pump (e.g., by cardiac glycosides) caused significant activation of KACh in atrial cells, with a time course similar to that of Na+ accumulation and in a manner indistinguishable from that of Na(+)-mediated activation of the channel, suggesting that cardiac glycosides activated KACh by increasing intracellular Na+ levels. These results demonstrate for the first time a direct effect of cardiac glycosides on atrial myocytes involving ion channels which are critical in the regulation of cardiac rhythm.  相似文献   

17.
A K+ channel from salt-tolerant melon inhibited by Na+   总被引:1,自引:0,他引:1  
  相似文献   

18.
Furini S  Beckstein O  Domene C 《Proteins》2009,74(2):437-448
Previous studies have reported that the KcsA potassium channel has an osmotic permeability coefficient of 4.8 x 10(-12) cm3/s, giving it a significantly higher osmotic permeability coefficient than that of some membrane channels specialized in water transport. This high osmotic permeability is proposed to occur when the channel is depleted of potassium ions, the presence of which slow down the water permeation process. The atomic structure of the potassium-depleted KcsA channel and the mechanisms of water permeation have not been well characterized so far. Here, all-atom molecular dynamics simulations, in conjunction with an umbrella sampling strategy and a nonequilibrium approach to simulate pressure gradients are employed to illustrate the permeation of water in the absence of ions through the KcsA K+ channel. Equilibrium molecular dynamics simulations (95 ns combined total length) identified a possible structure of the potassium-depleted KcsA channel, and umbrella sampling calculations (160 ns combined total length) revealed that this structure is not permeable by water molecules moving along the channel axis. The simulation of a pressure gradient across the channel (30 ns combined total length) identified an alternative permeation pathway with a computed osmotic permeability of approximately (2.7 +/- 0.9) x 10(-13) cm3/s. Water fluxes along this pathway did not proceed through collective water motions or transitions to vapor state. All of the major results of this study were robust against variations in a wide set of simulation parameters (force field, water model, membrane model, and channel conformation).  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号