首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Deletional analysis within the long terminal repeat (LTR) of Moloney murine leukemia virus (M-MuLV) was performed. By molecular cloning, deletions were made in the vicinity of the XbaI site at -150 base pairs (bp) in the U3 region, between the tandemly repeated enhancers and the TATA box. The effects of the deletions on LTR function were measured in two ways. First, deleted LTRs were fused to the bacterial chloramphenicol acetyltransferase gene and used in transient expression assays. Second, infectious M-MuLVs were generated by transfection of M-MuLV proviruses containing the deleted LTRs, and the relative infectivity of the mutant viruses was assessed by XC-syncytial assay. Most of the deleted LTRs examined showed relatively high promoter activity in the transient chloramphenicol acetyltransferase assays, with values ranging from 20 to 50% of the wild-type M-MuLV LTR. Thus, the sequences between the enhancers and the TATA box were not absolutely required for transient expression. However, infectivity of viruses carrying the same deleted LTRs showed more pronounced effects. Deletion of sequences from -195 to -174 bp reduced infectivity 20- to 100-fold. Deletion of sequences within the region from -174 to -122 bp did not affect infectivity, indicating that this region is dispensable. On the other hand, deletion of sequences from -150 to -40 bp reduced infectivity from 5 to 6 logs, although the magnitude of the reduction partly may have reflected threshold envelope protein requirements for positive XC assays. The reduced infectivity did not appear to result from a failure of proviral DNA synthesis or integration by the mutant. Thus, the infectivity measurements identified three functional domains in the region between the enhancers and the TATA box.  相似文献   

3.
Friend and Moloney murine leukemia viruses (F- and M-MuLV) induce distinct diseases in hematopoietic tissues following inoculation of newborn mice of susceptible strains. F-MuLV induces erythroleukemia preceded by severe early hemolytic anemia; M-MuLV induces thymomas and only very mild hemolysis. The major viral determinant of severe early hemolytic anemia residues in the env gene, but sequences located outside this gene can modulate this effect. By means of genetic chimeras of F- and M-MuLV, we have found that although they are confined to the 5' portion of the env gene intron, sequences that determine the distinctive hemolytic potentials of F- and M-MuLV are widely distributed over a region spanning the RNA encapsidation domain, the gag gene, and the portion of the pol gene encoding the viral protease. Within this large region, two fragments of M-MuLV, a 1.3-kb region encoding the matrix, pp12, and capsid proteins and a 0.8-kb region encoding the nucleocapsid and the viral protease, were capable, individually, of partially attenuating the capacity of F-MuLV for induction of severe early hemolytic anemia. In association, these two fragments conferred complete attenuation. Moreover, a second pair of adjacent fragments within this large region appeared to behave cooperatively to confer complete attenuation; a 0.36-kb region roughly corresponding to the encapsidation domain, although not detectably altering hemolytic potential on its own, deepened the attenuation conferred by the adjacent 1.3-kb region. Whether capable of inducing severe early hemolytic anemia or not and despite different efficiencies of induction of recombinant polytropic viruses, all chimeric viruses retained the erythroleukemogenicity of the F-MuLV parent.  相似文献   

4.
The Friend or Moloney mink cell focus-forming (MCF) virus encodes a recombinant-type envelope glycoprotein, gp70, that is closely related to the membrane glycoprotein, gp55, of Friend spleen focus-forming virus (SFFV). We have shown previously that gp55 has the ability to activate cell growth by binding to the cellular receptor for erythropoietin. Here we show that gp70 encoded by either the Friend or Moloney MCF virus also binds to the erythropoietin receptor and that coexpression of the receptor and gp70 in an interleukin-3 (IL-3)-dependent cell line can activate IL-3-independent growth. Furthermore, when the cDNA for the human IL-2 receptor beta chain, which is related by sequence to the erythropoietin receptor, was introduced into this cell line, it became growth factor independent after infection either with SFFV or with one of the two MCF viruses but not with an ecotropic virus. Based on these observations, we propose a mechanism for the early stage of leukemogenesis induced by the MCF-type murine leukemia viruses.  相似文献   

5.
6.
The helper virus has been shown to play a critical role in the development of lymphoma induced by the defective Abelson murine leukemia virus (A-MuLV). Indeed, A-MuLV pseudotyped with some viruses, such as the Moloney MuLV, has been shown to be highly lymphogenic, whereas A-MuLV pseudotyped with other viruses, such as the BALB/c endogenous N-tropic MuLV, has been shown to be devoid of lymphogenic potential (N. Rosenberg and D. Baltimore, J. Exp. Med. 147:1126-1141, 1978; C. D. Scher, J. Exp. Med. 147: 1044-1053, 1978). To map the viral DNA sequences encoding the determinant of the lymphogenic potential of Moloney MuLV when complexed with A-MuLV, we constructed chimeric helper viral DNA genomes in vitro between parental cloned infectious viral DNA genomes from Moloney MuLV and from BALB/c endogenous N-tropic MuLV. Chimeric helper MuLVs, recovered after transfection of NIH 3T3 cells were used to rescue A-MuLV, and the pseudotypes were inoculated into newborn NIH Swiss, CD-1, and SWR/J mice to test their lymphogenic potential. We found that a 0.44-kilobase-pair PstI-KpnI long terminal repeat-containing fragment from the Moloney MuLV was sufficient to confer some, but not complete, lymphogenic potential to a chimeric virus (p7M2) in NIH Swiss and SWR/J mice, but not in CD-1 mice. The addition of the 3'-end env sequences (comprising the carboxy terminus of gp70 and all p15E) to the U3 long terminal repeat sequences restored the full lymphogenic potential of the Moloney MuLV. Our data indicate that the 3'-end sequences of the helper Moloney MuLV are somehow involved in the development of lymphoma induced by A-MuLV. The same sequences have previously been found to harbor the determinant of leukemogenicity and of disease specificity of Moloney MuLV when inoculated alone.  相似文献   

7.
We have previously described the construction of a mutant of Moloney murine leukemia virus, in594-2, which carries a 2-base-pair insertion in the U5 region of the genome and is partially defective in forming the integrated proviral DNA. We have now recovered a cloned copy of an unusual provirus from rat cells infected with this mutant. The viral genome is flanked by long terminal repeats in inverted orientation, with U3 sequences joined to cellular DNA at both of the outer edges. In addition, the provirus is a recombinant, containing a segment of a VL30 element in inverted orientation in place of the Moloney murine leukemia virus env region. The recovery of this provirus indicates that two U3 regions can be used for viral integration and suggests that there may be no absolute requirement in the reaction for those U5 sequences outside the 13-base-pair inverted repeats.  相似文献   

8.
9.
Friend replication-competent murine leukemia virus (F-MuLV), clone 57, induces a severe early hemolytic anemia and a later erythroleukemia after inoculation of newborn IRW or ICFW mice, whereas Moloney MuLV (M-MuLV) induces only lymphoid leukemia. We have shown previously that the attenuated hemolytic and erythroleukemogenic abilities of an F-MuLV variant, clone B3, were due mostly to changes in the env gene and long terminal repeat, respectively. For the present study, we derived two constructs exchanging env fragments of F-MuLV 57 and M-MuLV and compared them with two constructs described by Chatis et al. (J. Virol. 52:248-254, 1984) exchanging the U3 region of the long terminal repeat of the same parental viruses. When comparing the hemolytic effect of these constructs with those of the parent, we found that the U5-gag-pol region of F-MuLV was required for development of severe early hemolytic anemia and that, unlike the env of F-MuLV B3, the env of M-MuLV was fully competent in inducing severe early hemolytic anemia when associated with the F-MuLV U5-gag-pol and U3 regions. As expected, induction of erythroleukemia depended on the presence of the F-MuLV U3 region; however, the presence of both the U3 and U5-gag-pol regions of F-MuLV appeared to be synergistic and was associated with a more rapid appearance of erythroleukemia.  相似文献   

10.
The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses.  相似文献   

11.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

12.
13.
The effects of rearrangement and insertion of sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) were investigated. The alterations were made by recombinant DNA manipulations on a plasmid subclone containing an M-MuLV LTR. Promoter activity of altered LTRs was measured by fusion to the bacterial chloramphenicol acetyltransferase gene, followed by transient expression assay in NIH 3T3 cells. M-MuLV proviral organizations containing the altered LTRs were also generated, and infectious virus was recovered by transfection. Infectivity of the resulting virus was quantified by XC plaque assay, and pathogenicity was determined by inoculating neonatal NIH Swiss mice. Inversion of sequences in the U3 region containing the tandemly repeated enhancer sequences (-150 to -353 base pairs [bp]) reduced promoter activity approximately fivefold in the transient-expression assays. Infectious virus containing the inverted sequences (Mo- M-MuLV) showed a 20-fold reduction in relative infectivity compared with wild-type M-MuLV, but the virus still induced thymus-derived lymphoblastic lymphoma or leukemia in mice, with essentially the same kinetics as for wild-type M-MuLV. We previously derived an M-MuLV which carried inserted enhancer sequences from the F101 strain of polyomavirus (Mo + PyF101 M-MuLV) and showed that this virus is nonleukemogenic. In Mo + PyF101 M-MuLV, the PyF101 sequences were inserted between the M-MuLV promoter and the M-MuLV enhancers (at -150 bp). A new LTR was generated in which the PyF101 sequences were inserted to the 5' side of the M-MuLV enhancers (at -353 bp, PyF101 + Mo M-MuLV). The PyF101 + Mo LTR exhibited promoter activity similar (40 to 50%) to that of wild-type M-MuLV, and infectious PyF101 + Mo M-MuLV had high infectivity on NIH 3T3 cells (50% of wild type). In contrast to the nonleukemogenic Mo + PyF101 M-MuLV, PyF101 + Mo M-MuLV induced leukemia with kinetics similar to that of wild-type M-MuLV. Thus, the position of the PyF101 sequences relative to the M-MuLV LTR affected the biological behavior of the molecular construct. Furthermore, PyF101 + Mo M-MuLV induced a different spectrum of neoplastic disease. In comparison with wild-type M-MuLV, which induces a characteristic thymus-derived lymphoblastic lymphoma with extremely high frequency, PyF101 + Mo M-MuLV was capable of inducing both acute myeloid leukemia or thymus-derived lymphoblastic lymphoma, or both. Tumor DNA from both the PyF101 + Mo- and Mo- M-MuLV-inoculated animals contained recombinant proviruses with LTRs that differed from the initially inoculated virus.  相似文献   

14.
15.
The glucocorticoid-regulatory sequences from the murine mammary tumor virus long terminal repeat (MMTV LTR) were introduced into the LTR of Moloney murine leukemia virus (M-MuLV) by recombinant DNA techniques. The site of insertion was in the M-MuLV LTR U3 region at -150 base pairs with respect to the RNA cap site. Infectious M-MuLVs carrying the altered LTRs (Mo + MMTV M-MuLVs) were recovered by transfection of proviral clones into NIH-3T3 cells. The Mo + MMTV M-MuLVs were hormonally responsive in that infection was 3 logs more efficient when performed in the presence of dexamethasone, irrespective of the orientation of the inserted MMTV sequences. However, even in the presence of hormone, the Mo + MMTV M-MuLVs were less infectious than wild-type M-MuLV. In contrast to the large effect on infectivity, dexamethasone induced virus-specific RNA levels in chronically Mo + MMTV M-MuLV-infected cells only two- to fourfold. Fusion plasmids between the altered LTRs and the bacterial chloramphenicol acetyltransferase gene allowed the investigation of LTR promoter strength by the transient chloramphenicol acetyltransferase expression assay. The chloramphenicol acetyltransferase assays indicated that the insertion of MMTV sequences into the M-MuLV LTR reduced promoter activity in the absence of glucocorticoids but that promoter activity could be induced two- to fivefold by dexamethasone. The Mo + MMTV M-MuLVs were also tested for the possibility that viral DNA synthesis or integration during initial infection was enhanced by dexamethasone. However, no significant difference was detected between cultures infected in the presence or absence of hormone. The insertion of MMTV sequences into an M-MuLV LTR deleted of its enhancer sequences did not yield infectious virus or active promoters, even in the presence of dexamethasone.  相似文献   

16.
Wolff L  Koller R  Hu X  Anver MR 《Journal of virology》2003,77(8):4965-4971
Retroviruses can be used to accelerate hematopoietic cancers predisposed to neoplastic disease by prior genetic manipulations such as in transgenic or knockout mice. The virus imparts a second neoplastic "hit," providing evidence that the initial hit is transforming. In the present study, a unique retrovirus was developed that can induce a high incidence of myeloid disease and has a broad host range. This agent is a Moloney murine leukemia virus (Mo-MuLV)-based virus that has most of the U3 region of the long terminal repeat (LTR) replaced with that of retrovirus 4070A. Like Mo-MuLV, this virus, called MOL4070LTR, is NB-tropic and not restricted by Fv1 allelles. MOL4070LTR causes myeloid leukemias in ca. 50% of mice, a finding in contrast to Mo-MuLV, which induces almost exclusively lymphoid disease. The data suggest that the LTR of the 4070A virus expands the tissue tropism of the disease to the myeloid lineage. Interesting, MCF recombinant envelope was expressed in the lymphoid but not the myeloid neoplasms of BALB/c mice. This retrovirus has the potential for accelerating myeloid disease in genetically engineered mice.  相似文献   

17.
Long terminal repeats of feline leukemia viruses cloned from feline acute myeloid leukemias frequently contained direct repeats of 40 to 74 bp in the upstream region of the enhancer (URE). The repetitive URE conferred an enhancer function upon gene expression in myeloid cells, suggesting its association with tumorigenic potential in myeloid cells.  相似文献   

18.
A series of recombinant molecules were constructed which direct the expression of the easily assayed gene chloramphenicol acetyltransferase. We have used these recombinants to show that the 73/72-base-pair tandem repeat unit from the Moloney murine sarcoma virus long terminal repeat shares a number of properties with the prototypic enhancer element, the simian virus 40 72-base-pair repeat. Specifically, the Moloney murine sarcoma virus sequence significantly enhances the level of gene expression at both 5' and 3' locations and in either orientation relative to the test gene. It is able to enhance gene activity both from its own promoter and from a heterologous (simian virus 40) promoter. The 73/72-base-pair subunits of the Moloney murine sarcoma virus enhancer differ in sequence by four nucleotides and also in the strength of their enhancer function. The promoter distal A repeat is at least three times as active as the promoter proximal B repeat in enhancing chloramphenicol acetyltransferase expression. Results of these studies also show that the enhancer sequence alone is unable to induce gene activity but requires other promoter elements, including a proximal GC-rich sequence and the Goldberg-Hogness box.  相似文献   

19.
20.
Structures of somatically acquired murine leukemia virus (MuLV) genomes present in the DNA of a large panel of MuLV-induced C57BL and BALB/c B and non-T/non-B cell lymphomas were compared with those present in MuLV-induced T-cell lymphomas induced in the same low-"spontaneous"-lymphoma-incidence mice. Analyses were performed with probes specific for the gp70, p15E, and U3-long terminal repeat (LTR) regions of ecotropic AKV MuLV and a mink cell focus-forming virus (MCF)-LTR probe annealing with U3-LTR sequences of a unique endogenous xenotropic MuLV, which also hybridizes with U3-LTR sequences of a substantial portion of somatically acquired MCF genomes in spontaneous AKR thymomas. The DNAs of both T- and B-cell tumors induced by neonatal inoculation with the highly oncogenic C57BL-derived MCF 1233 virus predominantly contain integrated MCF proviruses. In contrast, the DNAs of more slowly developing B and non-T/non-B cell lymphomas induced by poorly oncogenic ecotropic or MCF C57BL MuLV isolates mostly contain somatically acquired ecotropic MuLV genomes. Approximately 50% of the spontaneous C57BL lymphoma DNAs contain somatically acquired MuLV genomes. None of the integrated MuLV proviruses annealed with the MCF-LTR probe, which indicates a clear difference in LTR structure with a substantial portion of the somatically acquired MuLV genomes present in the DNA of spontaneous AKR thymomas. This study stresses a dominant role of MuLV with ecotropic gp70 and LTR sequences in the development of slowly arising MuLV-induced B and non-T/non-B cell lymphomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号