首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study was undertaken to assess the availability to maize of nutrients from earthworm casts (wormcasts) collected from a grazing paddock in the Eastern Cape province of South Africa. Maize (cv PAN 473) was grown in pots filled with ground wormcasts, non-casted surrounding soil and a mixture of the two media. Fertiliser application increased growth and uptake of nutrients by maize grown on both wormcast and non-casted soil. Maize grown on wormcasts had significantly (p < 0.05) higher plant height, stem diameter, dry weight and showed higher nutrient uptake and lower fertiliser response than that grown on corresponding non-casted surface soil. The uptakes of plant nutrients, growth and dry matter yields were in the order fertiliser>wormcasts>non-casted soil. Mixing worm casts with non-casted soil improved maize growth and nutrient uptake over non-casted soil. It is concluded that wormcasts could be used as a soil amendment for crop production, especially in small-scale production systems.  相似文献   

2.
The weight of wormcasts thrown on to the surface of eight fields of differing agricultural history depends on the numbers of Allolobophora longa Ude and A. nocturna Evans present and also on the mean size of the individuals of these two species. The weight of wormcasts produced per acre per annum on the different fields varied from 1 to 25 tons and it is calculated that from 4 to 36 tons of soil per acre per annum pass through the alimentary tracts of the total population of earthworms present. The percentage pore space of a soil containing a high population of wormcasting species is much greater than that of a field with a high population of worms which do not produce wormcasts. In two old pastures, the amount of coarse sand relative to silt and clay was found to increase appreciably with depth: this distribution is probably a result of the long-continued activity of earthworms.  相似文献   

3.
B. T. Kang  A. Ojo 《Plant and Soil》1996,178(1):113-119
Pot experiments were carried out to assess the nutrient availability of earthworm casts (wormcasts) of Hyperiodrilus africanus that were collected from plots of Dactyladenia barteri, Leucaena leucocephala and Treculia africana grown on an Alfisol (Oxic paleustalf) as affected by drying and grinding, different periods of pre-incubation of ground wormcasts, and fertilizer application. Experiments were carried out using a double pot technique and rice (Oryza sativa) was used as test crop. Wormcasts had a higher nutrient status than corresponding surface soils. Rice grown on wormcasts produced higher shoot dry weight and showed higher nutrient uptake, lower fertilizer response than rice grown on surface soils. Poor rice growth and nutrient uptake when grown on unground wormcasts are attributed to high bulk density of the wormcasts. Preincubation of the wormcasts did not benefit the crop. Drying and grinding and fumigation of wet wormcasts improved rice plant growth and nutrient uptake.  相似文献   

4.
We chose two surface soils with contrasting textures as model sediments for a model pond study. One soil, a calcareous clay, had a relatively high natural phosphate content and a large phosphate adsorption capacity. The second soil, a non calcareous loam, had a relatively low natural phosphate content and a small phosphate adsorption capacity. Chemical characteristics of both soils were roughly proportional to mineral surface area.Pasture sites of each soil were tilled to a depth of 15 cm and two plots at each site were fertilized by hand with triple superphosphate. A third plot at each site was left unfertilized. After fertilization the plots were mechanically mixed and left fallow for 2 to 3 months. Then the plots were resampled and equilibration phosphate concentrations were determined again. Results showed significant phosphate fixation by the clay soil but no fixation by the loam soil.Research Soil Scientist, Botanist, Physical Science Technician and Physical Science Technician, respectively, USDA-ARS Agric. Water Quality Management Lab.Contribution from the USDA-ARS agricultural Water Quality Management Lab., Durant, OK 74701.  相似文献   

5.
We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Calcareous dark brown red soil (calcixerollic xerochrept) from northern Syria was used in a pot experiment to study the fate of triple super phosphate fertilizer (TSP) with and without a crop (local durum wheat [Triticum turgidum L. group durum (Desf.)] cv. Bohouth). The soil received 17 μg P/g soil of 32P-labeled TSP, and samples were collected from soils and plants at successive dates. Soil inorganic P was ≈?94% of total soil P, with only 50–80% being soluble. Calcium phosphate compounds were the dominant fraction (≤?68%) of the soluble inorganic soil P followed by occluded iron phosphate (≤?48%), and all other fractions were ≤?9%. Isotopic measurements showed that ≈?50% of fertilizer P was non–exchangeable within 2 days, and TSP values in each fraction of soil inorganic P fluctuated in relatively similar proportions to the concentrations of P fractions in soil. Available P (soil & TSP) in cropped soil was more than that in the uncropped soil, and plants had no effect on the distribution of P from fertilizer amongst the different soil P fractions.  相似文献   

8.
Sun  Xiaowen  Shao  Chuang  Chen  Ling  Jin  Xinmeng  Ni  Hong 《Journal of Plant Growth Regulation》2021,40(4):1674-1686

Phosphate-solubilizing bacteria (PSB) are important plant growth-promoting rhizobacteria that can increase soil fertility through the solubilization of insoluble inorganic phosphate and organophosphorus. In this study, a PSB, Burkholderia gladioli MEL01, was isolated and identified from rice–wheat rotation rhizosphere soil. MEL01 had an excellent phosphate-solubilizing capacity (reaching 107.69 mg/L) toward insoluble inorganic phosphate rock phosphate. HPLC analysis revealed that the mechanism of phosphate solubilization of MEL01 was probably due to secreted oxalic acid and gluconic acid transformation of phosphate from insoluble to soluble. MEL01 also exhibited 4030 U/L specific chitosanase activity when cultured with chitosan fermentation medium. Interestingly, the chitosan hydrolysis product chitooligosaccharide could significantly enhance the MEL01 phosphate-solubilizing capacity. Pot experiments showed that MEL01 chitosan medium fermentation liquor (MCMFL) could promote improvement of soil available phosphorus and pakchoi growth when supplemented with phosphate rock phosphate as the phosphate fertilizer. In addition, pot experiments demonstrated that MCMFL could also promote the growth of wheat, which could decrease the amount of compound fertilizer used. Microbial diversity analysis showed that the genera Pseudomonas, Burkholderia, Mycoplana, and Cellvibrio were enriched, which might participate in synergetic phosphate solubilization. Therefore, after fermentation with chitosan and fertilization with rock phosphates, MEL01 has potential as a phosphate biofertilizer in ecological agricultural production.

  相似文献   

9.
Summary Surface soil materials from the 0- to 15 cm depth of 12 sites that were suspected to contain high levels of P, as a result of years of repeated applications of either inorganic or organic P fertilizers, were cropped with wheat and alfalfa in the greenhouse for about one year. The total P removed in plant materials provided an estimate of the plant available P in the soils. The probable dominant phosphate compound controlling the release of P in the soil solution during cropping was determined using the GEOCHEM program and an activity diagram. The data show that P availability is partly dependent on the stability of the phosphate compound present, although the relative positions of the points on the activity diagram show no quantitative relationship with either the total plant P uptake or the phosphate buffering capacity of the soils. The positions of the points, however, indicate that with time the formation of more stable P compounds during cropping could be attributed to reactions in the soil as well as to crop removal. The more soluble compounds could have recrystallized or were transformed into compounds of lower solubility. There is also the possibility that the more soluble P compounds were exhausted by crop removal leaving behind the less soluble compounds.  相似文献   

10.
Wheat was sown in a phosphorus (P) deficient soil. Plants atlow levels of applied P had lower growth rates and lower concentrationsof phosphate in the shoots than plants grown with ‘highP’. Activities of both insoluble and soluble phosphataseincreased with P deficiency in the mature leaves. Soluble phosphataseactivities increased 2.5–3.0 fold as the concentrationof phosphate in the leaves fell from 0.4% to 0.1% dry weightThis increase was not a consequence of reduced growth, as severenitrogen deficiency had no effect on phosphatase activity. Soluble phosphatase activities were higher in young than inmature leaves, and also increased 3–4 fold with severewater deficit. However these increases in activity were notaccompanied by low concentrations of phosphate. Moreover, solublephosphatase activities in mature leaves of plants grown underconditions of water deficit rapidly decreased after rewatering.In contrast, the high soluble phosphatase activities in matureleaves of P deficient wheat persisted for up to 12 d after theresupply of P to adequate levels.  相似文献   

11.
土壤盐渍化对尿素与磷酸脲氨挥发的影响   总被引:5,自引:0,他引:5  
梁飞  田长彦 《生态学报》2011,31(14):3999-4006
氨挥发是肥料氮素损失的重要途径之一,肥料类型、土壤类型、肥料用量以及土壤全盐量均影响氨挥发损失率及挥发特征。本文采用通气法测定了磷酸脲和尿素两种肥料六个施肥量处理分别施入六个不同盐渍化程度(1.7、9.9、16.4、23.2、29.1、37.9 g/kg)的土壤后氨挥发累积状况和动力学特性,以及土壤氨挥发累积量与土壤电导值之间的相关性。结果表明:(1)在土壤总盐介于1.66 -37.9 g/kg的范围内,随着土壤含盐量增加,尿素与磷酸脲处理的氨挥发累积量显著增加;土壤含盐量对氨挥发速率有显著的促进作用。(2)各处理二次线性函数拟合的二项式系数a均为负值,表明:在不同盐渍化条件下肥料的挥发速率是随着时间增长而降低的;一次线性函数和Elovich 方程的斜率a随土壤含盐量增加而增大,表明:土壤盐渍化将加剧土壤的氨挥发速率。(3)土壤氨挥发累积量与电导值拟合结果符合logistic方程(︱R︱分别为0.9732,0.9815,0.965,0.9182,0.9817,0.9971︱R︱>r0.01=0.9172, n=6),氨挥发累积量随土壤电导值呈“S”型增长。  相似文献   

12.
In many tropical and volcanic soils, phosphorus (P) availability is strongly influenced by geochemical sorption, which binds P to soil minerals. The aim of this study was to determine whether biological demand or soil sorption strength was the primary control over phosphate availability and retention in a wet tropical soil with high sorption capacity and low P availability. We added 32PO4 to soil from the upper two horizons and assessed the ability of soil microbes to immobilize the added phosphate in the presence of strong sorption. We added phosphate at two concentrations, one representing background turnover that adds low concentrations of P to the soil solution, and the other representing nutrient pulses that can add fairly high fluxes of P to the soil solution. Sorption and microbial immobilization were rapid for both concentrations, consuming most added P within 30 min. Thus, little P remained in the soil solution or extractable pools, which are considered more available to plants. Although soil sorption strength was almost identical for the two horizons, immobilization of tracer P was approximately three times greater in the upper horizon, where most microbial activity was located. This result suggests that microbial demand controlled how P was partitioned into biological versus geochemical sinks. Further evidence for microbial control is suggested by the movement of tracer P from the sorbed pool into the microbial pool when demand was stimulated by the addition of carbon (C). We also explored how increased nitrogen (N) and P availability changed P dynamics in this nutrient poor soil. In contrast to the unfertilized soil, long-term N and P fertilization substantially reduced biological control over inorganic P. P fertilization saturated the soils, overwhelming biological P demand, whereas N fertilization appeared to increase available P through reduced P sorption. Where biological demand for P is high and P becomes available in the soil solution, microbes may play an important role in controlling P partitioning into biological versus geochemical sinks even in soils that have high sorption capacity.  相似文献   

13.
To test the hypothesis that high levels of soluble phosphate applied in combination with VAM fungi, to citrus plants, can cause growth depression even in the absence of other limiting factors, and also to test if rock phosphate, under these conditions, may be a satisfactory P source, a greenhouse experiment was conducted using sterilized soil with four levels of phosphate (0, 50, 100 and 200 ppm P) supplied either as soluble P or as rock phosphate. Citrus seedlings were either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus etunicatum or left uninoculated. Six months after the start of the experiment, the plants were harvested and shoot dry weight, P and K uptake, root colonization and the number of spores in 50 cm3 of soil were determined. Significant increases were found in dry matter yields and in P and K contents, due to VAM fungus inoculation, at the zero and 50 ppm soluble P levels and at all rock phosphate levels. At 100 ppm soluble P, the development of VAM plants was equilvalent to that of non-VAM plants, and at 200 ppm, growth was significantly less than that of non-VAM plants. Root colonization and sporulation were reduced at higher P levels. The absolute growth depression of VAM plants at the higher P level was likely due to P toxicity. In addition, high leaf P and K concentrations may have interfered with carbohydrate distribution and utilization in these symbioses. Rock phosphate may be used with VAM citrus to substitute for medium amounts of soluble phosphate.  相似文献   

14.
一株高效解磷真菌新菌株的筛选鉴定及解磷特性   总被引:2,自引:0,他引:2  
从辽宁省辽中县多年耕种的日光温室番茄根际土壤中筛选出一株解磷真菌,通过菌落形态特征和ITS rDNA序列对比,鉴定该菌株为草酸青霉菌的一株新菌株,将其命名为PSF1.该菌株能利用葡萄糖、蔗糖、乳糖、半乳糖、可溶性淀粉等多种碳源和硫酸铵、氯化铵、硝酸铵、硝酸钾、尿素等多种氮源进行生长代谢并表现出较强的解磷能力,在C/N 10∶1~60∶1、初始pH 7~8的条件下生长情况较好且解磷能力较高.该菌株有很强的产酸能力,在培养过程中培养液pH由7.00~7.50下降至2.06~4.87;在4种磷源培养液中的最高解磷量分别为磷酸三钙(869.62 mg·L^-1)>磷矿粉(233.56 mg·L^-1)>磷酸铝(44.77 mg·L^-1)>磷酸铁(28.42 mg·L^-1).Pearson相关分析表明,菌株在磷酸三钙、磷矿粉和磷酸铁培养液中的解磷量与pH的变化之间呈极显著负相关关系,在磷酸铝培养液中无显著相关关系.菌株PSF1解磷能力强,生长条件广,推测其在土壤中有较强的解磷能力.  相似文献   

15.
A. Islam 《Plant and Soil》1970,33(1-3):533-544
Summary The concentrations of water soluble and ammonium acetate extractable phosphorus in all the soils under investigation first increased and then decreased with time of submergence under rice cropping. The increase in soluble phosphorus in the three acid soils of Luisiana, Casiguran and Guadalupe was related to decrease in the concentration of iron, calcium and reductant soluble phosphates, while in slightly acidic Maahas clay, the increase was associated with decrease in iron and aluminium phosphates. But in the calcareous soil, the increase was due to decrease in the concentration of aluminium and reductant soluble phosphates. The decrease was due to the re-formation of insoluble aluminium, iron and calcium phosphates in Luisiana and Guadalupe clays, to the formation of aluminium and calcium phosphates in Maahas and to the formation of calcium phosphate only in Casiguran fine sand. The application of phosphorus at the rate of 100 pounds per acre produced better tillering, more penicles and higher straw and grain productions in Luisiana, Casiguran and Guadalupe only where the level of soluble phosphate was very low in pots where no phosphorus was applied. This study, thus, indicated the necessity of phosphorus fertilization in low land rice for soils which are low in phosphorus and high in active iron and aluminium.  相似文献   

16.
Douglas-fir seedlings were grown in containers in peat-vermiculite or mineral soil each amended with different levels of concentrated superphosphate (CSP) or a granulated North Carolina phosphate rock (RP). Media dilute acid-fluoride extractable phosphorus (DAP), seedling photosynthesis, weights, and tissue P concentrations were measured at 65±3 and 105±3 days. DAP was highly correlated with soluble fertilizer P (but not total P) added at the beginning of the experiment. Considerable soluble P was lost from peat-vermiculite but not from the mineral soil. Seedling total P content was proportional to the amount of soluble P per container at both harvests, but was greater for a given level of soluble P in the organicversus the mineral medium. Added soluble P increased foliar P concentrations, plant P content, and dry weight. Net carbon uptake was highly correlated with added levels of soluble P, foliar P concentrations, and with total P content. The internal efficiency of P from the RP source was less than P from CSP with respect to P contentversus growth, net CO2 uptake, and net photosynthesis rates. At the end of the experiment, seedling P content plus DAP remaining in the media for the higher fertilizer rates accounted for 75% of the originally added soluble P in the mineral soils, but only 15% of the originally added soluble P in the organic media.  相似文献   

17.
通过原位采集淹水和排水状态下土壤剖面4个层次的气体,研究氧化亚氮(N2O)在水旱轮作体系稻田土壤剖面中的动态分布特征.试验设置小麦-单季稻和油菜-双季稻两种轮作体系,包括施N和不施N两种施肥方式.结果表明:施用N肥极显著促进了土壤剖面N2O的产生(P<0.01),不同层次间N2O浓度相关性极显著(P<0.01),小麦、油菜生长期施N和无N处理下层30 cm和50 cm处N2O浓度均高于表层7 cm和15 cm处;早稻无N处理则为表层7 cm和15 cm处高于下层30 cm和50 cm处(P<0.05),其他水稻处理各层次间无显著差异.无N处理土壤N2O峰值出现在旱作向水稻的转变期,施N处理则出现在旱作第2次追肥后,季节转变期也有较高的N2O浓度.  相似文献   

18.
一株红壤溶磷菌的分离、鉴定及溶磷特性   总被引:9,自引:0,他引:9  
【目的】为了提高红壤磷素利用率,探讨溶磷菌溶磷机理。【方法】利用难溶性无机盐培养基从花生根际土壤样品中分离到一株溶磷菌C5-A,结合菌落形态特征、生理生化和16S rRNA序列确定该菌株的系统发育地位;通过菌株C5-A在NBRIP液体培养基培养过程中培养液pH变化确定其溶磷能力;利用液体发酵实验测定不同的碳源、氮源对菌株C5-A溶磷的影响;通过高效液相色谱检测C5-A在不同氮源培养液中有机酸的种类和浓度。【结果】菌株C5-A鉴定为洋葱伯克霍尔德氏菌(Burkholderia cepacia),遗传稳定性较好。在FePO4和AlPO4培养液中,菌株C5-A的溶磷量和pH变化呈显著负相关;菌株C5-A对磷酸三钙、磷酸铝、磷酸铁、磷矿粉均有较强的溶解能力,最高溶磷量分别为125.79、227.34、60.02和321.15 mg/L;菌株C5-A对不同浓度的两种磷矿粉有较强的溶解能力;分别以麦芽糖和草酸铵为碳源和氮源时溶磷量最高。高效液相色谱检测出10种有机酸,分别为草酸(葡萄糖酸)、乙酸、苹果酸、琥珀酸和5种未知有机酸,然而,乙酸而非草酸似乎是影响C5-A溶磷的重要有机酸。【结论】从红壤花生根际土壤中筛选到一株对难溶性无机盐具有较强溶解能力溶的菌株C5-A,有望为开发高效红壤微生物磷肥提供种质资源。  相似文献   

19.
Plants from the Cyperaceae family (sedges), usually considered as non-mycorrhizal, constitute almost exclusively the herbaceous stratum of the ultramafic maquis in New Caledonia. These plants are pioneers and are important for the ecological restoration of mined areas. Costularia comosa, one of the most common sedges in this environment, was grown under field conditions on ultramafic soil, fertilized or not with phosphate and/or nitrogen. Results showed that the addition of phosphate to the soil induced a clear increase in mycorrhizal colonization of C. comosa and an increase in arbuscule abundance, reflecting the establishment of a functional mycorrhizal symbiosis. Significant positive correlations were found among mycorrhizal parameters and plant or soil phosphorus concentrations. Nitrogen fertilization did not affect mycorrhizal colonization of C. comosa. The improvement in mycorrhizal colonization by phosphate fertilization did not influence significantly nickel concentrations in the roots and shoots of plants. This study demonstrated that phosphate fertilization of ultramafic soil improved mycorrhizal colonization of C. comosa, with formation of a functional symbiosis under field conditions.  相似文献   

20.
Topsoil stockpiled for 4 years resulted in an accumulation of NH4-N at depths of 1m or more in mound, as measured by an ammonia gas-sensing electrode. When leached with water these soils were also found to contain high concentrations of dissolved organic C below 1m. Both NH4-N and DOC were products of microbial mineralisation of soil organic matter that accumulated under anaerobic conditions. When these soils were restored a flush of decomposition took place, fuelled by labile organic matter and soluble nitrogen.Stockpiled soil which underwent an ammonium-rich perfusion regime in the laboratory indicated that in-mound soils rapidly attained greater nitrification potential than surface mound soils and also had greater potential for further mineralisation of organic matter to NH4-N. This further production was seen as a contribution from the bacterial flush, stimulated by the large labile-C pool already present.As the bulk of stored soil was anaerobic, restored soils were seen as potentially wasteful of their N-reserves; the fate of nitrogen and soluble carbon compounds in restored soils is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号