首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Plasma membrane lipid metabolism of petunia petals during senescence   总被引:3,自引:0,他引:3  
The specific activities of 6 enzymes, which are involved in the synthesis and catabolism of membrane lipids, were monitored in plasma membranes isolated from petunia petals during senescence. These included phosphatidylinositol (PI) kinase (EC 2.7.1.67), phosphatidylinositol monophosphate (PIP) kinase (EC 2.7.1.68). diacylglycerol (DAG) kinase (EC 2.7.1.107), phospholipase A (EC 3.1.1.4) and PIP- and PIP2-phospholipase C˙(EC 3.1.4.3). Using endogenous substrate, the [32P]PA and [32P]PIP2 formation increased to 140 and 200%, respectively, of the day 1 value by 4 days after harvest. There was no significant change in [32P]PIP formation during the same time period. On the fifth day the petals wilted and the [32P]PA and [32P]PIP formation declined significantly. In contrast, the [32P]PIP2 formation remained high in the day 5 petals. When the lipid kinase activities were assayed in the membranes in the presence of exogenous substrate the specific activity of all of the enzymes increased. and the changes in [32P]PA production over the 5-day period were similar to those observed with endogenous substrate. When exogenous PI and PIP were added, however, there was no longer an increase in [32P]PIP2 formation by plasma membranes of day 4 petals and [32P]PIP formation significantly decreased. The relative decrease in PIP and PIP2 formation by day 4 membranes when exogenous substrate was added may have resulted from differences in the lipase activities in the day 1 and day 4 membranes. The plasma membrane A-type phospholipase activity increased throughout the 5 day period, and phospholipase C activity increased two-fold between day 1 and day 4. Such changes in the metabolism of the plasma membrane lipids during flower senescence would affect the ability of the petals to use inositol phospholipid-based signal transduction pathways.  相似文献   

2.
A high level of free-abscisic acid (ABA) was detected when corms were still in deep dormancy. The level of free-ABA decreased as the corm dormancy disappeared and increased temporarily after complete release from dormancy. A gradual slight increase of bound-ABA was observed during dormancy release.Treatment of dormant corms with benzyladenine (BA) increased sprouting but the sprouts did not show normal growth. Ethylene treatment induced complete sprouting and subsequent normal growth. Changes in ABA levels and ethylene production are discussed in relation to dormancy release in freesia corms.  相似文献   

3.
Flower coloration is controlled by internal and external factors, including temperature. The aim of the present work was to examine the effect of temperature on anthocyanin synthesis and chalcone synthase gene ( chs ) expression in petunia flowers. A moderate-low temperature enhanced both anthocyanin accumulation and chs expression in the corollas. However, the effect on chs expression was not always correlated with that on anthocyanin content, suggesting a post-translational effect. The effect was local and required the exposure of corollas, but not the whole plant, to the ambient temperature. The response of chs to moderate-low temperatures did not coincide with its expression during flower development. Moderate-low temperatures only slightly affected gibberellic acid (GA3)-induced chs expression in the light, but activated chs expression under non-inducing conditions, i.e. in the absence of GA3 in the dark. The results of this study suggest that moderate-low temperatures do not simply enhance the developmental regulation of anthocyanin biosynthetic gene expression; they act as a specific and separate signal.  相似文献   

4.
以27个上海交通大学自育矮牵牛新种质为研究材料,对花色这一重要观赏性状及其花色素进行了系统研究。用RHSCC比色和色差仪测色方法描述了矮牵牛的花色表型,通过特征显色反应初步判断了矮牵牛的花色素类型,以标准曲线法和pH示差法等方法测定了矮牵牛3类花色素的含量。研究表明:这27个矮牵牛种质的花色可归于5个色系,以紫红色和红色为主;矮牵牛花色在CIELab表色系统中分布较广,而且不同色系花色参数的区分度较大。矮牵牛花瓣中含有类黄酮和花色苷,不含或含少量类胡萝卜素。13个被测种质的花瓣类黄酮含量在2.5~12.2 mg·/g–1 ·FW之间,花色苷含量在0.08~3.88 mg·g–1 FWmg/g·FW之间,而类胡萝卜素在矮牵牛花瓣中含量很低,远远低于类黄酮含量,在7个被测种质中,最高仅为0.216 mg·g–1 FWmg/g·FW,最低为0.004 mg·g–1 FWmg/g·FW。以上结果显示,5个色系矮牵牛所含花色素种类不尽相同,含量也有明显差异,其中紫红色系和红色系花瓣大多不含或含极少量类胡萝卜素,黄色系、白色系和紫色系花瓣的类黄酮含量较高,紫色系和紫红色系花瓣花色苷含量较高。  相似文献   

5.
Methyl jasmonate (JA-Me), applied to dendrobium and petunia flowers either as an aqueous solution through the cut stem or stigma, or as a gas, accelerated senescence. The rate of appearance of wilting symptoms was directly related to the amount of JA-Me applied to the flowers. JA-Me increased ethylene production by the flowers, irrespective of application method, and this effect was also proportional to the dose of the compound. In both dendrobium and petunia flowers, the JA-Me induced increases in ethylene production and 1-aminocyclopropane-1-carboxylic acid content followed similar patterns. Aminooxyacetic acid, an inhibitor of ACC-synthase, and silver-thiosulfate, an inhibitor of ethylene action, completely inhibited the effects of JA-Me. It is concluded that JA-Me enhances petunia and dendrobium flower senescence via the promotion of ACC and ethylene production.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - AOA aminooxyacetic acid - Fl flower - JA jasmonic acid - JA-Me jasmonic acid methyl ester - LOX lipoxygenase - PLase A A-type phospholipase - STS silver-thiosulfate  相似文献   

6.
Gibberellic acid (GA3) promotes corolla elongation and pigmentation in petunia flowers. We have previously shown that G.A3 induces pigmentation by activating specific genes of the anthocyanin biosynthetic pathway. The aim of the present work was to examine whether GA3 induces also the expression of genes from other metabolic pathways in petunia corollas that may be associated with growth. Recently we reported the cloning of the petunia sam gene coding for S -adenosylmethionine synthetase (SAM-S). In the present work we show that sam expression is induced by GA3 in both corollas and stems. The expression of the gene was correlated with corolla elongation. GA3 and the cylokinin, N -6-benzyladenine (BA) promoted corolla growth and sam expression, whereas abscisic acid (ABA) inhibited corolla elongation and repressed sam mRNA accumulation. An analysis of sam expression in stems indicated a high level in young, elongating internodes and a very low level in the mature, non-elongating stem zone. The results of the present study show that the effect of GA3 on gene expression in the corolla of petunia, is not restricted to the anthocyanin biosynthetic pathway, they also suggest a possible role for sam in GA3-induced corolla and stem elongation.  相似文献   

7.
8.
Leaf senescence varies greatly among cotton cultivars, possiblydue to their root characteristics, particularly the root-sourcedcytokinins and abscisic acid (ABA). Early-senescence (K1) andlate-senescence (K2) lines, were reciprocally or self-graftedto examine the effects of rootstock on leaf senescence and endogenoushormones in both leaves and xylem sap. The results indicatethat the graft of K1 scion onto K2 rootstock (K1/K2) alleviatedleaf senescence with enhanced photosynthetic (Pn) rate, increasedlevels of chlorophyll (Chl) and total soluble protein (TSP),concurrently with reduced malondialdehyde (MDA) contents inthe fourth leaf on the main-stem. The graft of K2 scion ontoK1 rootstock enhanced leaf senescence with reduced Pn, Chl,and TSP, and increased MDA, compared with their respective self-graftedcontrol plants (K1/K1 and K2/K2). Reciprocally grafted plantsdiffered significantly from their self-grafted control plantsin levels of zeatin and its riboside (Z+ZR), isopentenyl andits adenine (iP+iPA), and ABA, but not in those of dihydrozeatinand its riboside (DHZ+DHZR) in leaves in late season, whichwas consistent with variations in leaf senescence between reciprocallyand self-grafted plants. The results suggest that leaf senescenceis closely associated with reduced accumulation of Z+ZR, andiP+iPA rather than DHZ+DHZR, or enhanced ABA in leaves of cotton.Genotypic variation in leaf senescence may result from the differencein root characteristics, particularly in Z+ZR, iP+iPA, and ABAwhich are regulated by the root system directly or indirectly. Key words: Abscisic acid, cotton, cytokinins, grafting, leaf senescence Received 23 October 2007; Revised 17 January 2008 Accepted 23 January 2008  相似文献   

9.
Changes in endogenous abscisic acid (ABA) and phenols were determined in petals of two diverse species of rose, viz., Rosa damascena Mill and Rosa bourboniana Desport during flower development. A progressive increase in free ABA was observed during flower development till full bloom in both the species with higher content of free ABA in Rosa damascena. While bound ABA level increased in Rosa damascena till stage 6, in Rosa bourboniana it continued to increase till full bloom. Acidic phenols increased slowly in both the species till stage 4, but sharply afterwards and no significant differences were noticed during full bloom period. Bound phenols content was higher in Rosa damascena during full bloom period. The significance of these changes in relation to flowering in the two diverse species of rose is discussed.  相似文献   

10.
The senescence pattern of the three uppermost leaves of four rice (Oryza sativa L.) cultivars viz. Ratna, Jaya, Masuri and Kalojira was analysed in terms of decline of chlorophyll and by measuring [32P]-phosphate retention and export from leaf to grains during the reproductive development. With the advancement of reproductive development, the cultivars Masuri and Kalojira showed a sequential mode of senescence, but the cultivars Ratna and Jaya showed a non-sequential mode of leaf senescence where the flag leaf senesced earlier than the older second leaf. Foliar spraying with benzyladenine (0.5 mM) significantly delayed, and abscisic acid (0.1 mM) accelerated, leaf senescence. In untreated control plants, the second leaf had the highest export of labelled phosphate among the leaves at the grain formation stage (0–7 days) in Masuri and Kalojira. This was compensated by the flag leaf at the grain development stage (7–14 days), whereas export of [32P]-phosphate was highest from the flag leaf of Ratna and Jaya at the grain development stage. Compared with the control, benzyladenine treatment caused higher retention of [32P]-phosphate in the leaves and also export to the grains, but abscisic acid treatment gave lower retention and export of [32P]-phosphate to the grains. The amount of [32P]-phosphate export from a mother to a daughter shoot developed in the axil of the second leaf of plants with the panicle removed, was less than that to panicles remaining on control plants of all cultivars. When the panicle had been excised, the greatest export of [32P]-phosphate took place from the second leaf to the daughter shoot in all cultivars. Excision of the panicle delayed leaf senescence as compared with intact controls and maintained an age-related leaf senescence pattern in all the four cultivars. The results presented here demonstrate that mobilization of phosphorus from leaf to grains, regardless of cultivar or age and position of the leaf, correlates well with the senescence of that leaf.  相似文献   

11.
12.
Endogenous cytokinin activity was determined in the flowers of Cosmos sulphureus Cav. from bud emergence to full bloom using the soybean callus bioassay. Cytokinin activity was low early in flower development but increased prior to full bloom. In Sephadex LH-20 column chromatography of flower extracts, the cytokinins present co-eluted with zeatin, zeatin riboside and glucoside cytokinin. While the former two predominated prior to full bloom, cytokinin glucoside activity appeared to be at a maximum at full bloom. The possible relevance of these findings is discussed in relation to flower development.  相似文献   

13.
14.
Cotyledons of watermelon ( Citrullus vulgaris Schrad. cv. Fairfax) were excised from the embryo after 24 h of imbibition and cultured for several days on filter paper with water or abscisic acid (ABA) solution. In some experiments the cotyledons were pretreated with benzyladenine (BA) for times ranging from 5 min to 2 h before transfer to ABA.
A treatment with 10−5 M ABA blocked all developmental parameters examined (growth and increase in appropriate markers for glyoxysome, peroxisome and plastid development). This blocking can be prevented by an initial treatment with 10−4 M BA for 2 h. This pretreatment with BA overrides the action of ABA: the final developmental responses are not just restored to the level of the water control, but they are almost as high as those obtained by treating the cotyledons with BA only. If BA is administered for three days together with ABA the reversal of inhibition is much less efficient.  相似文献   

15.
With glucose-limited continuous cultures of Petunia hybrida six steady states were obtained at specific growth rates varying from 0.0035 to 0.012 h(-1) (corresponding with culture residence times varying from 285 to 85 h). The macromolecular and the elemental biomass composition which were determined in four steady states showed no major differences over the range of growth rates examined. During all six steady states specific subtrate and oxygen consumption as well as biomass and extracellular product formation rates were monitored. Moreover the specific activities of the mitochondrial cytochrome and alternative pathway were determined and used to estimate specific adenosine triphosphate (ATP) production rates. Data thus obtained were used in the determination of maintenance and true growth yield parameters. For the maintenance on glucose and ATP values of 0.0070 C-mol/C-mol/h and 0.034 mol/C-mol/h were obtained, respectively. True yields of biomass on glucose and ATP were 0.50 C-mol/C-mol and 0.28 C-mol/mol, respectively. (c) 1995 John Wiley & Sons, Inc.  相似文献   

16.
This study investigated the possibility that abscisic acid (ABA) and cytokinins may mediate the effect of water deficit that enhances plant senescence and remobilization of pre‐stored carbon reserves. Two high lodging‐resistant wheat (Triticum aestivum L.) cultivars were field grown and treated with either a normal or high amount of nitrogen at heading. Well‐watered (WW) and water‐stressed (WS) treatments were imposed from 9 d post‐anthesis until maturity. Chlorophyll (Chl) and photosynthetic rate (Pr) of the flag leaves declined faster in WS plants than in WW plants, indicating that the water deficit enhanced senescence. Water stress facilitated the reduction of non‐structural carbohydrate in the stems and promoted the re‐allocation of prefixed 14C from the stems to grains, shortened the grain filling period and increased the grain filling rate. Water stress substantially increased ABA but reduced zeatin (Z) + zeatin riboside (ZR) concentrations in the stems and leaves. ABA correlated significantly and negatively, whereas Z + ZR correlated positively, with Pr and Chl of the flag leaves. ABA but not Z + ZR, was positively and significantly correlated with remobilization of pre‐stored carbon and grain filling rate. Exogenous ABA reduced Chl in the flag leaves, enhanced the remobilization, and increased grain filling rate. Spraying with kinetin had the opposite effect. The results suggest that both ABA and cytokinins are involved in controlling plant senescence, and an enhanced carbon remobilization and accelerated grain filling rate are attributed to an elevated ABA level in wheat plants when subjected to water stress.  相似文献   

17.
The contents of IAA and flavonoids (Fls) were monitored in developing anthers, in vitro growing pollen tubes, and in the in vivo pollen-pistil system of two petunia (Petunia hybrida L.) clones, self-compatible and self-incompatible. In both clones, the development of male gametophytes was accompanied by the increase in the IAA (from 10 to 60–70 ng/g fr wt) and Fls (from 2 to 20 mg/g fr wt) contents. In both clones, pollen grain germination was accompanied by a substantial (by 10–30%) increase in the IAA content during the first two hours and Fl content during the first hour. Treatments with IAA and Fls stimulated both in vitro pollen grain germination and pollen tube growth by 25–30%. Male gametophyte germination in vivo, on the pistil surface, was accompanied by the increase in the IAA content from 90 to 200 ng/g fr wt during 8 h, whereas the content of Fl increased from 2 to 3 mg/g fr wt during the first hour and was maintained later at this level. In the pollen-pistil system, IAA and Fls were distributed evenly in the tissues of stigma, style, and ovary. On the basis of data obtained, we concluded that Fls might be endogenous mediators of IAA transport, which is one of the principal regulators of male gametophyte growth and development in the progame phase of fertilization, but are not involved in the mechanism of gametophyte incompatibility.  相似文献   

18.
19.
The data obtained characterize the changes in the contents of endogenous phytohormones (IAA, cytokinins, GA, and ABA) in germinating pollen grains and growing pollen tubes of a self-compatible clone of petunia (sPetunia hybrida L.) within an 8-h period under in vitro conditions. The hydration and initiation of germination of pollen grains brought the ABA content down to a zero level, while the levels of GA, IAA, and cytokinins increased 1.5–2-fold. Later, in the growing pollen tubes, the GA content increased twofold, while the levels of IAA and cytokinins decreased. The exogenous ABA and GA3 considerably promoted pollen germination and pollen tube growth; however, only the treatment with GA3 produced the maximum length of pollen tubes. The exogenous IAA promoted and the exogenous cytokinins hindered the growth of pollen tubes. The membrane potential, as assessed with a potential-sensitive dye diS-C3-(5), considerably increased in the pollen grains treated with ABA and benzyladenine, whereas IAA and GA3 did not practically affect it. The authors conclude that the mature pollen grains contain the complete set of hormones essential for pollen germination and pollen tube growth. ABA, GA, and IAA together with cytokinins control the processes of pollen grain hydration, germination, and pollen tube growth, respectively.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 584–590.Original Russian Text Copyright © 2005 by Kovaleva, Zakharova, Minkina, Timofeeva, Andreev.  相似文献   

20.
Abscisic acid is considered an apocarotenoid formed by cleavage of a C-40 precursor and subsequent oxidation of xanthoxin and abscisic aldehyde. Confirmation of this reaction sequence is still awaited, and might best be achieved using a cell-free system capable of both carotenoid and abscisic acid biosynthesis. An abscisic acid biosynthesizing cell-free system, prepared from flavedo of mature orange fruits, was used to demonstrate conversion of farnesyl pyrophosphate, geranylgeranyl pyrophosphate and all-trans-β-carotene into a range of β,β-xanthophylls, xanthoxin, xanthoxin acid, 1′,4′-trans-abscisic acid diol and abscisic acid. Identification of product carotenoids was achieved by high-performance liquid chromatography and on-line spectral analysis of individual components together with co-chromatography. Putative C-15 intermediates and product abscisic acid were identified by combined capillary gas chroma-tography-mass spectrometry. Kinetic studies revealed that β-carotene, formed from either famesyl pyrophosphate or geranylgeranyl pyrophosphate, reached a maximum within 30 min of initiation of the reaction. Thereafter, β-carotene levels declined exponentially. Catabolism of substrate β-carotene into xanthophylls, putative abscisic acid precursors and product abscisic acid was restricted to the all-trans-isomer. However, when a combination of all-trans- and 9-cis-β-carotene in the ratio 1:1 was used as substrate, formation of abscisic acid and related metabolites was enhanced. Biosyn-thetically prepared [14C]-all-trans-violaxanthin, [14C]-all-trans-neoxanthin and [14C]-9′-cis-neoxanthin were used as substrates to confirm the metabolic interrelationship between carotenoids and abscisic acid. The results are consistent with 9′-cis-neoxan-thin being the immediate carotenoid precursor to ABA, which is oxidatively cleaved to produce xanthoxin. Formation of abscisic aldehyde was not observed. Rather, xanthoxin appeared to be converted to abscisic acid via xanthoxin acid and 1′,4′-trans-abscisic acid diol. An alternative pathway for abscisic acid biosynthesis is therefore proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号