首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The enzyme ribonuclease T1 (RNase T1) isolated from Aspergillus oryzae was cocrystallized with the specific inhibitor guanylyl-2',5'-guanosine (2',5'-GpG) and the structure refined by the stereochemically restrained least-squares refinement method to a crystallographic R-factor of 14.9% for X-ray data above 3 sigma in the resolution range 6 to 1.8 A. The refined model consists of 781 protein atoms, 43 inhibitor atoms in a major site and 29 inhibitor atoms in a minor site, 107 water oxygen atoms, and a metal site assigned as Ca. At the end of the refinement, the orientation of His, Asn and Gln side-chains was reinterpreted on the basis of two-dimensional nuclear magnetic resonance data. The crystal packing and enzyme conformation of the RNase T1/2',5'-GpG complex and of the near-isomorphous RNase T1/2'-GMP complex are comparable. The root-mean-square deviation is 0.73 A between equivalent protein atoms. Differences in the unit cell dimensions are mainly due to the bound inhibitor. The 5'-terminal guanine of 2',5'-GpG binds to RNase T1 in much the same way as in the 2'-GMP complex. In contrast, the hydrogen bonds between the catalytic center and the phosphate group are different and the 3'-terminal guanine forms no hydrogen bonds with the enzyme. This poor binding is reflected in a 2-fold disorder of 2',5'-GpG (except the 5'-terminal guanine), which originates from differences in the pucker of the 5'-terminal ribose. The pucker is C2'-exo for the major site (2/3 occupancy) and C1'-endo for the minor site (1/3 occupancy). The orientation of the major site is stabilized through stacking interactions between the 3'-terminal guanine and His92, an amino acid necessary for catalysis. This might explain the high inhibition rate observed for 2',5'-GpG, which exceeds that of all other inhibitors of type 2',5'-GpN. On the basis of distance criteria, one solvent peak in the electron density was identified as metal ion, probably Ca2+. The ion is co-ordinated by the two Asp15 carboxylate oxygen atoms and by six water molecules. The co-ordination polyhedron displays approximate 4m2 symmetry.  相似文献   

2.
V D Kumar  L Lee  B F Edwards 《Biochemistry》1990,29(6):1404-1412
The crystal structure of carp parvalbumin (pI = 4.25) has been refined by restrained least-squares analysis employing X-ray diffractometer data to 1.5-A resolution. The final residual for 12,653 reflections between 10 and 1.5 A with I(hkl) greater than 2 sigma(I) is 0.215. A total of 74 solvent molecules were included in the least-squares analysis. The root mean square deviation from ideality of bond lengths is 0.024 A. The model has a root mean square difference of 0.59 A from the positions of the main-chain atoms in a previously reported structure [Moews, P. C., & Kretsinger, R. H. (1975) J. Mol. Biol. 91, 201-228], which was refined by difference Fourier syntheses using data collected by film to 1.9 A. Although the overall features of the two models are very similar, there are significant differences in the amino-terminal region, which was extensively refit, and in the number of oxygen atoms liganding calcium in the CD and EF sites, which increased from six to seven in the CD site and decreased from eight to seven in the EF site.  相似文献   

3.
The three-dimensional structure of the 131-residue rat intestinal fatty acid-binding protein, without bound ligand (apoI-FABP), has been refined with x-ray diffraction data to a nominal resolution of 1.19 A. The final model has a conventional crystallographic R-factor of 16.9% for 34,290 unique reflections [a root mean square (r.m.s.) deviation for bond length of 0.012 A and a r.m.s. deviation of 2.368 degrees for bond angles]. Ninety-two residues are present as components of the protein's 10 anti-parallel beta-strands while 14 residues are part of its two short alpha-helices. The beta-strands and alpha-helices are organized into two nearly orthogonal beta-sheets. Particular attention has been placed in defining solvent structure and the structures of discretely disordered groups in this protein. Two hundred thirty-seven solvent molecules have been identified; 24 are located within apoI-FABP. The refined model includes alternate conformers for 228 protein atoms (109 main-chain, 119 side-chain) and 63 solvent molecules. We have found several aromatic side-chains with multiple conformations located near, or in, the protein's ligand binding site. This observation, along with the fact that these side-chains have a temperature factor that is relatively higher than that of other aromatic residues, suggests that they may be involved in the process of noncovalent binding of fatty acid. The absence of a true hydrophobic core in I-FABP suggests that its structural integrity may be maintained primarily by a hydrogen bonding network involving protein and solvent atoms.  相似文献   

4.
The histidyl residues of bovine pancreatic ribonuclease A (RNase A) play a crucial role in enzymatic activity. Diethylpyrocarbonate (DEPC) is a potent inhibitor of RNase A, and its precise sites of action on the imidazole rings of the four histidyl residues of RNase A are not clearly defined. We have used a multidisciplinary approach including enzyme assay, calculation of accessible surface area (ASA), isoelectric pH gradient technique, fluorescence investigations, circular dichroism spectroscopy, differential scanning calorimetry, and 1H NMR analysis to study the sites of DEPC interaction with the imidazole rings of the four histidyl residues. Our results demonstrate that among the histidyl residues of RNase A, His48 is not accessible to react with DEPC. However, the sequential carbethoxylation of the imidazole rings of His119, His105, and His12 occurs on the nitrogen atoms of Ndelta, Nepsilon, and Nepsilon, respectively. Carbethoxylation of His119 was followed by conversion of the A conformation to the B conformation in the active site. However, the carbethoxylation of His12 was accompanied by a second spatial rotation of the corresponding imidazole ring in the active site to adopt a new conformation. These conformation changes are accompanied by subsequent decrements in the thermal stability of the protein. Therefore, these findings reinforce the important structural roles of the spatial positions for His119 and His12 in the active site of RNase A.  相似文献   

5.
Bovine seminal ribonuclease (BS-RNase) is a unique member of the pancreatic-like ribonuclease superfamily. The native enzyme is a mixture of two dimeric forms with distinct structural features. The most abundant form is characterized by the swapping of N-terminal fragments. In this paper, the crystal structure of the complex between the swapping dimer and uridylyl(2',5')adenosine is reported at 2.06 A resolution. The refined model has a crystallographic R-factor of 0.184 and good stereochemistry. The quality of the electron density maps enables the structure of both the inhibitor and active site residues to be unambiguously determined. The overall architecture of the active site is similar to that of RNase A. The dinucleotide adopts an extended conformation with the pyrimidine and purine base interacting with Thr45 and Asn71, respectively. Several residues (Gln11, His12, Lys41, His119, and Phe120) bind the oxygens of the phosphate group. The structural similarity of the active sites of BS-RNase and RNase A includes some specific water molecules believed to be relevant to catalytic activity. Upon binding of the dinucleotide, small but significant modifications of the tertiary and quaternary structure of the protein are observed. The ensuing correlation of these modifications with the catalytic activity of the enzyme is discussed.  相似文献   

6.
The X-ray structure of the inhibitor complex of bovine ribonuclease A with cytidylic acid (2'-CMP) has been determined at 2.3 A (1 A = 0.1 nm) resolution and refined by restrained least-squares refinement to R = 0.132 for 5650 reflections. Incorporation of the inhibitor molecule has occurred with little disturbance of the protein main-chain atoms, although significant displacement of some side-chain atoms has occurred, particularly in the region of the active site. The binding of 2'-CMP to ribonuclease A is different from that of the related cytidine-N(3)-oxide 2'-phosphate, which has an extra oxygen on N(3) of the cytidine base. The PO4(2-) group is held by hydrogen bond interactions to the side-groups of His 12, Glu 11 and His119. Thr45 is involved in stabilizing the enzyme-ligand complex by forming hydrogen bond interactions between O(gamma) and the pyrimidine base N(3) atom and between the main-chain N(45) and O(2) of the base. Phe120 is much closer to the inhibitor than in the cytidine N(3)-oxide 2'-phosphate structure.  相似文献   

7.
A general acid-base catalytic mechanism is responsible for the cleavage of the phosphodiester bonds of the RNA by ribonuclease A (RNase A). The main active site is formed by the amino acid residues His12, His119, and Lys41, and the process follows an endonucleolytic pattern that depends on the existence of a noncatalytic phosphate-binding subsite adjacent, on the 3'-side, to the active site; in this region the phosphate group of the substrate establishes electrostatic interactions through the side chains of Lys7 and Arg10. We have obtained, by means of site-directed mutagenesis, RNase A variants with His residues both at positions 7 and 10. These mutations have been introduced with the aim of transforming a noncatalytic binding subsite into a putative new catalytic active site. The RNase activity of these variants was determined by the zymogram technique and steady-state kinetic parameters were obtained by spectrophotometric methods. The variants showed a catalytic efficiency in the same order of magnitude as the wild-type enzyme. However, we have demonstrated in these variants important effects on the substrate's cleavage pattern. The quadruple mutant K7H/R10H/H12K/H119Q shows a clear increase of the exonucleolytic activity; in this case the original native active site has been suppressed, and, as consequence, its activity can only be associated to the new active site. In addition, the mutant K7H/R10H, with two putative active sites, also shows an increase in the exonucleolytic preference with respect to the wild type, a fact that may be correlated with the contribution of the new active site.  相似文献   

8.
The interactions of RNase A with cytidine 3'-monophosphate (3'-CMP) and deoxycytidyl-3',5'-deoxyadenosine (d(CpA)) were analyzed by X-ray crystallography. The 3'-CMP complex and the native structure were determined from trigonal crystals, and the d(CpA) complex from monoclinic crystals. The differences between the overall structures are concentrated in loop regions and are relatively small. The protein-inhibitor contacts are interpreted in terms of the catalytic mechanism. The general base His 12 interacts with the 2' oxygen, as does the electrostatic catalyst Lys 41. The general acid His 119 has 2 conformations (A and B) in the native structure and is found in, respectively, the A and the B conformation in the d(CpA) and the 3'-CMP complex. From the present structures and from a comparison with RNase T1, we propose that His 119 is active in the A conformation. The structure of the d(CpA) complex permits a detailed analysis of the downstream binding site, which includes His 119 and Asn 71. The comparison of the present RNase A structures with an inhibitor complex of RNase T1 shows that there are important similarities in the active sites of these 2 enzymes, despite the absence of any sequence homology. The water molecules were analyzed in order to identify conserved water sites. Seventeen water sites were found to be conserved in RNase A structures from 5 different space groups. It is proposed that 7 of those water molecules play a role in the binding of the N-terminal helix to the rest of the protein and in the stabilization of the active site.  相似文献   

9.
Bovine pancreatic ribonuclease A (RNase A) has a conserved His ... Asp catalytic dyad in its active site. Structural analyses had indicated that Asp121 forms a hydrogen bond with His119, which serves as an acid during catalysis of RNA cleavage. The enzyme contains three other histidine residues including His12, which is also in the active site. Here, 1H-NMR spectra of wild-type RNase A and the D121N and D121A variants were analyzed thoroughly as a function of pH. The effect of replacing Asp121 on the microscopic pKa values of the histidine residues is modest: none change by more than 0.2 units. There is no evidence for the formation of a low-barrier hydrogen bond between His119 and either an aspartate or an asparagine residue at position 121. In the presence of the reaction product, uridine 3'-phosphate (3'-UMP), protonation of one active-site histidine residue favors protonation of the other. This finding is consistent with the phosphoryl group of 3'-UMP interacting more strongly with the two active-site histidine residues when both are protonated. Comparison of the titration curves of the unliganded enzyme with that obtained in the presence of different concentrations of 3'-UMP shows that a second molecule of 3'-UMP can bind to the enzyme. Together, the data indicate that the aspartate residue in the His ... Asp catalytic dyad of RNase A has a measurable but modest effect on the ionization of the adjacent histidine residue.  相似文献   

10.
Crystal structure of Escherichia coli CheY refined at 1.7-A resolution   总被引:19,自引:0,他引:19  
The three-dimensional structure of wild-type CheY from Escherichia coli has been refined by stereochemically restrained least squares minimization to a crystallographic R-factor of 15.1% at 1.7-A resolution. The structure contains 1165 atoms, including all atoms of the protein, 147 water molecules, and three sulfate ions. The final model has root mean square deviations of 0.018 and 0.049 A from idealized bond lengths and angle distances, respectively. Seven amino acid side chains have been modeled in dual conformations. CheY folds as a compact (beta/alpha)5 globular protein, with the phosphorylation region contained in a cavity on one face of the molecule. This active site area is bordered by the carboxyl termini of the three central beta-strands, by alpha 1, and by the loop connecting beta 5 to alpha 5. The Lys-109 side chain of this loop extends into the active site by virtue of its cis peptide bond conformation preceding Pro-110. The epsilon-amino group of Lys-109 is in close bonding contact with the carboxyl group of Asp-57, the residue that is phosphorylated in the activation process of CheY. The details of the hydrogen bonding network in the phosphorylation region indicate that structural rearrangements must accompany the phosphorylation of Asp-57.  相似文献   

11.
The structure of the Gln25 variant of ribonuclease T1 (RNase T1) crystallized at pH 7 and at high ionic strength has been solved by molecular replacement using the coordinates of the Lys25-RNase T1/2'-guanylic acid (2'GMP) complex at pH 5 [Arni et al. (1988) J. Biol. Chem. 263, 15358-15368] and refined by energy minimization and stereochemically restrained least-squares minimization to a crystallographic R-factor of 14.4% at 1.84-A resolution. The asymmetric unit contains three molecules, and the final model consists of 2302 protein atoms, 3 sulfates (at the catalytic sites), and 179 solvent water molecules. The estimated root mean square (rms) error in the coordinates is 0.15 A, and the rms deviation from ideality is 0.018 A for bond lengths and 1.8 degrees for bond angles. Significant differences are observed between the three molecules in the asymmetric unit at the base recognition and catalytic sites.  相似文献   

12.
The crystal structure of calmodulin (Mr 16,700, 148 residues) from Drosophila melanogaster as expressed in a bacterial system has been determined and refined at 2.2-A resolution. Starting with the structure of mammalian calmodulin, we produced an extensively refitted and refined model with a conventional crystallographic R value of 0.197 for the 5,239 reflections (F greater than or equal to 2 sigma (F)) within the 10.0-2.2-A resolution range. The model includes 1,164 protein atoms, 4 calcium ions, and 78 water molecules and has root mean square deviations from standard values of 0.018 A for bond lengths and 0.043 A for angle distances. The overall structure is similar to mammalian calmodulin, with a seven-turn central helix connecting the two calcium-binding domains. The "dumb-bell" shaped molecule contains seven alpha-helices and four "EF hand" calcium-binding sites. Although the amino acid sequences of mammalian and Drosophila calmodulins differ by only three conservative amino acid changes, the refined model reveals a number of significant differences between the two structures. Superimposition of the structures yields a root mean square deviation of 1.22 A for the 1,120 equivalent atoms. The calcium-binding domains have a root mean square deviation of 0.85 A for the 353 equivalent atoms. There are also differences in the amino terminus, the bend of the central alpha-helix, and the orientations of some of the side chains.  相似文献   

13.
M D Paulsen  R L Ornstein 《Proteins》1991,11(3):184-204
The structure and internal motions of cytochrome P-450cam, a monooxygenase heme enzyme with 414 amino acid residues, with camphor bound at the active site have been evaluated on the basis of a 175-psec molecular dynamics simulation carried out at 300 K. All hydrogen atoms were explicitly modeled, and 204 crystallographic waters were included in the simulation. Based on an analysis of the time course of the trajectory versus potential energy, root mean square deviation, radius of gyration, and hydrogen bonding, the simulation was judged to be stable and representative of the average experimental structure. The averaged structural properties of the enzyme were evaluated from the final 135 psec of the simulation. The average atomic displacement from the X-ray structure was 1.39 A for all heavy atoms and 1.17 A for just C-alpha atoms. The average root-mean-square (rms) fluctuations of all heavy atoms and backbone atoms were 0.42 and 0.37 A, respectively. The computed rms fluctuations were in reasonable agreement with the experimentally determined temperature factors. All 13 segments of alpha-helix and 5 segments of beta-sheet were well preserved with the exception of the N-terminal half of helix F which alternated between an alpha-helix and a 310-helix. In addition there were in general only small variations in the relative orientation of adjacent alpha-helices. The rms fluctuations of the backbone dihedral angles in the secondary structure elements were almost uniformly smaller, with the fluctuation in alpha-helices and beta-sheets, 31 and 10% less, respectively, than those in nonsecondary structure regions. The reported crystal structure contains kinks in both helices C and I. In the simulation, both of these regions showed high mobility and large deviations from their starting positions. Since the kink in the I helix is at the oxygen binding site, these motions may have mechanistic implications.  相似文献   

14.
The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 ester bond of membrane phospholipids. The highly conserved Tyr residues 52 and 73 in the enzyme form hydrogen bonds to the carboxylate group of the catalytic Asp-99. These hydrogen bonds were initially regarded as essential for the interfacial recognition and the stability of the overall catalytic network. The elimination of the hydrogen bonds involving the phenolic hydroxyl groups of the Tyr-52 and -73 by changing them to Phe lowered the stability but did not significantly affect the catalytic activity of the enzyme. The X-ray crystal structure of the double mutant Y52F/Y73F has been determined at 1.93 A resolution to study the effect of the mutation on the structure. The crystals are trigonal, space group P3(1)21, with cell parameters a = b = 46.3 A and c = 102.95 A. Intensity data were collected on a Siemens area detector, 8,024 reflections were unique with an R(sym) of 4.5% out of a total of 27,203. The structure was refined using all the unique reflections by XPLOR to a final R-factor of 18.6% for 955 protein atoms, 91 water molecules, and 1 calcium ion. The root mean square deviation for the alpha-carbon atoms between the double mutant and wild type was 0.56 A. The crystal structure revealed that four hydrogen bonds were lost in the catalytic network; three involving the tyrosines and one involving Pro-68. However, the hydrogen bonds of the catalytic triad, His-48, Asp-99, and the catalytic water, are retained. There is no additional solvent molecule at the active site to replace the missing hydroxyl groups; instead, the replacement of the phenolic OH groups by H atoms draws the Phe residues closer to the neighboring residues compared to wild type; Phe-52 moves toward His-48 and Asp-99 of the catalytic diad, and Phe-73 moves toward Met-8, both by about 0.5 A. The closing of the voids left by the OH groups increases the hydrophobic interactions compensating for the lost hydrogen bonds. The conservation of the triad hydrogen bonds and the stabilization of the active site by the increased hydrophobic interactions could explain why the double mutant has activity similar to wild type. The results indicate that the aspartyl carboxylate group of the catalytic triad can function alone without additional support from the hydrogen bonds of the two Tyr residues.  相似文献   

15.
The three-dimensional X-ray structure of the RNase T1[EC 3.1.27.3]-2'GMP complex crystallized at low pH value (4.0) was determined, and refined to 1.9 A resolution to give a final R value of 0.203. The refined model includes 781 protein atoms, 24 inhibitor atoms, and 43 solvent molecules. The imidazole rings of His27 and His40 interact with the carboxyl side chains of Glu82 and Glu58, respectively, whereas that of His92 is in contact with the main chain carbonyl oxygen of Ala75. In the complex, the ribose ring of the 2'GMP molecule adopts a C2'-endo puckering, and the exocyclic conformation is gauche(-)-gauche(+). The glycosyl torsion angle is in the syn range with an intramolecular hydrogen bond between N3 and O5', and the 2'-phosphate orientation is trans-gauche(-). The guanine base of the inhibitor is tightly bound to the base recognition site with five hydrogen bonds (N1--Glu46O epsilon 2, N2---Asn98O,O6---Asn44N, and N7 ---Asn43N delta 2/Asn43N) and is sandwiched between the phenolic ring portions of Tyr42 and Tyr45 by stacking interactions. The 2'-phosphate group interacts with Arg77N eta 2, Glu58O episilon 2, and Tyr 38O eta but not with any of the histidine residues. Arg77N eta 2 also interacts with Tyr38O eta. There is no interaction between the ribose moiety of the inhibitor and the enzyme.  相似文献   

16.
The three-dimensional structure of the RNase S complex with the synthetic dinucleoside monophosphate cytidilyl(2′,5′)adenosine(C2,p5,A) is determined using difference Fourier techniques at 2.0 Å resolution in conjunction with computer graphic model-building and energy minimization. The latter has been carried out as a function of the rigid body parameters of the dinucleoside monophosphate and the dihedral angles of the nucleoside portion as well as of relevent amino acids in the active site of the enzyme.The bound dinucleoside monophosphate is found to assume an extended conformation, with the adenine and cytidine bases nearly perpendicular. The bases form specific hydrogen bonds with groups in the active site. Although the atoms involved in the recognition of the pyrimidine base by the enzyme are the same as in the pyrimidine bases of UMP, CMP and UpcA, the details of the binding are different. The adenosine moiety blocks most of the various positions that His119 occupies in the native enzyme and forces it into one well-defined position. One of the His119 ring protons is in contact with O(5′) (the leaving group), O(1′) of the adenine ribose and with a free phosphoryl oxygen. No strong charge contacts with the phosphate group are observed.We show how combining X-ray data with computer graphic model-building, electron density fitting and energy calculations leads to the model we propose and discuss in detail the enzyme-nucleic acid interactions.  相似文献   

17.
Ribonuclease NT (RNase NT), induced upon tobacco mosaic virus (TMV) infection in Nicotiana glutinosa leaves, has a broad base specificity. The crystal structures of RNase NT in complex with either 5'-AMP, 5'-GMP, or 2'-UMP were determined at 1.8 A resolutions by molecular replacement. RNase NT consists of seven helices and seven beta strands, and the structure is highly similar to that of RNase NW, a guanylic acid preferential RNase from the N. glutinosa leaves, showing root mean square deviation (rmsd) of 1.1 A over an entire length of two molecules for Calpha atoms. The complex structures revealed that Trp42, Asn44, and Trp50 are involved in interactions with bases at B1 site (primary site), whereas Gln12, Tyr17, Ser78, Leu79, and Phe89 participate in recognition of bases at B2 site (subsite). The 5'-GMP and 5'-AMP bind both B1 and B2 sites in RNase NT, while 2'-UMP predominantly binds B1 site in the complex. The nucleotide binding modes in these complexes would provide a clue to elucidation of structural basis for the broad base specificity for RNase NT.  相似文献   

18.
Structure of phosphate-free ribonuclease A refined at 1.26 A   总被引:21,自引:0,他引:21  
The structure of phosphate-free bovine ribonuclease A has been refined at 1.26-A resolution by a restrained least-squares procedure to a final R factor of 0.15. X-ray diffraction data were collected with an electronic position-sensitive detector. The final model consists of all atoms in the polypeptide chain including hydrogens, 188 water sites with full or partial occupancy, and a single molecule of 2-methyl-2-propanol. Thirteen side chains were modeled with two alternate conformations. Major changes to the active site include the addition of two waters in the phosphate-binding pocket, disordering of Gln-11, and tilting of the imidazole ring of His-119. The structure of the protein and of the associated solvent was extensively compared with three other high-resolution, refined structures of this enzyme.  相似文献   

19.
Ribonuclease T1 was purified from an Escherichia coli overproducing strain and co-crystallized with adenosine 2'-monophosphate (2'-AMP) by microdialysis against 50% (v/v) 2-methyl-2,4-pentanediol in 20 mM sodium acetate, 2 mM calcium acetate, pH 4.2. The crystals have orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 48.93(1), b = 46.57(4), c = 41.04(2) A; Z = 4 and V = 93520 A3. The crystal structure was determined on the basis of the isomorphous structure of uncomplexed RNase T1 (Martinez-Oyanedel et al. (1991) submitted for publication) and refined by least squares methods using stereochemical restraints. The refinement was based on Fhkl of 7,445 reflections with Fo greater than or equal to 1 sigma (Fo) in the resolution range of 10-1.8 A, and converged at a crystallographic R factor of 0.149. The phosphate group of 2'-AMP is tightly hydrogen-bonded to the side chains of the active site residues Tyr38, His40, Glu58, Arg77, and His92, comparable with vanadate binding in the respective complex (Kostrewa, D., Choe, H.-W., Heinemann, U., and Saenger, W. (1989) Biochemistry 28, 7592-7600) and different from the complex with guanosine 2'-monophosphate (Arni, R., Heinemann, U., Tokuoka, R., and Saenger, W. (1988) J. Biol. Chem. 263, 15358-15368) where the phosphate does not interact with Arg77 and His92. The adenosine moiety is not located in the guanosine recognition site but stacked on Gly74 carbonyl and His92 imidazole, which serve as a subsite, as shown previously (Lenz, A., Cordes, F., Heinemann, U., and Saenger, W. (1991) J. Biol. Chem. 266, 7661-7667); in addition, there are hydrogen bonds adenine N6H . . . O Gly74 (minor component of three-center hydrogen bond) and adenosine O5' . . . O delta Asn36. These binding interactions readily explain why RNase T1 has some affinity for 2'-AMP. The molecular structure of RNase T1 is only marginally affected by 2'-AMP binding. Its "empty" guanosine-binding site features a flipped Asn43-Asn44 peptide bond and the side chains of Tyr45, Glu46 adopt conformations typical for RNase T1 not involved in guanosine binding. The side chains of amino acids Leu26, Ser35, Asp49, Val78 are disordered. The disorder of Val78 is of interest since this amino acid is located in a hydrophobic cavity, and the disorder appears to be correlated with an "empty" guanosine-binding site. The two Asp15 carboxylate oxygens and six water molecules coordinate a Ca2+ ion 8-fold in the form of a square antiprism.  相似文献   

20.
P J Loll  E E Lattman 《Proteins》1989,5(3):183-201
The structure of a complex of staphylococcal nuclease with Ca2+ and deoxythymidine 3',5'-bisphosphate (pdTp) has been refined by stereochemically restrained least-squares minimization to a crystallographic R value of 0.161 at 1.65 A resolution. The estimated root-mean-square (rms) error in the coordinates is 0.16 A. The final model comprises 1082 protein atoms, one calcium ion, the pdTp molecule, and 82 solvent water molecules; it displays an rms deviation from ideality of 0.017 A for bond distances and 1.8 degrees for bond angles. The mean distance between corresponding alpha carbons in the refined and unrefined structures is 0.6 A; we observe small but significant differences between the refined and unrefined models in the turn between residues 27 and 30, the loop between residues 44 and 50, the first helix, and the extended strand between residues 112 and 117 which forms part of the active site binding pocket. The details of the calcium liganding and solvent structure in the active site are clearly shown in the final electron density map. The structure of the catalytic site is consistent with the mechanism that has been proposed for this enzyme. However, we note that two lysines from a symmetry-related molecule in the crystal lattice may play an important role in determining the geometry of inhibitor binding, and that only one of the two required calcium ions is observed in the crystal structure; thus, caution is advised in extrapolating from the structure of the complex of enzyme and inhibitor to that of enzyme and substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号