首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For more than 50 years, zinc is known to be an essential trace element, having a regulatory role in the immune system. Deficiency in zinc thus compromises proper immune function, like it is observed in the elderly population. Here mild zinc deficiency is a common condition, documented by a decline of serum or plasma zinc levels with age. This leads to a dysregulation mainly in the adaptive immunity that can result in an increased production of pro-inflammatory cytokines, known as a status called inflamm-aging. T cell activation as well as polarization of T helper (Th) cells into their different subpopulations (Th1, Th2, Th17, regulatory T cells (Treg)) is highly influenced by zinc homeostasis. In the elderly a shift of the Th cell balance towards Th2 response is observed, a non-specific pre-activation of T cells is displayed, as well as a decreased response to vaccination is seen. Moreover, an impaired function of innate immune cells indicate a predominance of zinc deficiency in the elderly that may contribute to immunosenescence. This review summarizes current findings about zinc deficiency and supplementation in elderly individuals.  相似文献   

2.
Zinc in human health: effect of zinc on immune cells   总被引:3,自引:0,他引:3  
  相似文献   

3.
The biology of IL-12: coordinating innate and adaptive immune responses   总被引:13,自引:0,他引:13  
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of na?ve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation.  相似文献   

4.
On April 7,8, 2009 a Symposium entitled "Pathophysiology of Successful and Unsuccessful Ageing" took place in Palermo, Italy. Here, the lectures of G. Pawelec, D. Dunn-Walters and. G. Colonna-Romano on T and B immunosenescence are summarized. In the elderly, many alterations of both innate and acquired immunity have been described. Alterations to the immune system in the older person are generally viewed as a deterioration of immunity, leading to the use of the catch-all term immunosenescence. Indeed, many immunological parameters are often markedly different in elderly compared to young people, and some, mostly circumstantial, evidence suggests that retained function of both innate and acquired immunity in the elderly is correlated with health status. What is often not clear from studies is how far immune dysfunction is a cause or an effect. A better understanding of immunosenescence and mechanisms responsible for proven deleterious changes is needed to maintain a healthy state in later life and to design possible therapeutic interventions.  相似文献   

5.
Zinc and immunity   总被引:3,自引:0,他引:3  
Nutritional deficiency of zinc is widespread throughout the developing countries and a conditioned deficiency of zinc is known to occur in many diseased states. Zinc is known to play an important role in the immune system and zinc deficient subjects may experience increased susceptibility to a variety of pathogens. We have studied the effects of a mild deficiency of zinc on T cells in an experimental model of human zinc deficiency. We showed that T cell functions were affected adversely even when the deficiency of zinc was mild in humans. Characteristically during zinc deficiency, the serum thymulin activity (a thymic hormone) was decreased which was restored following zinc supplementation. Our studies also showed that zinc deficiency caused an imbalance between TH1 and TH2 functions. The production of IFN-g, IL-2, TNF-a (products of TH1 cells) were decreased, whereas the production of IL-4, IL-6 and IL-10 (products of TH2) were not affected during zinc deficiency. T cell subpopulation studies revealed that the CD4+ CD45RA+ to CD4+ CD45RO+ ratio was decreased as a result of zinc deficiency, suggesting that zinc may be required for the regeneration of new CD4+ T cells. We further documented that zinc deficiency decreased NK cell lytic activity and caused a decrease in the percentage of CD8+ CD73+ T cells which are known to be predominantly precursors of cytotoxic T cells. In a suitable cell culture model our studies revealed that the gene expression of a DNA synthesizing enzyme TK was affected adversely which resulted in delayed cell cycle and decreased cell growth. The above immunological consequences of zinc deficiency may be responsible for decreased cell mediated immune functions in zinc deficient subjects.  相似文献   

6.
Innate defenses help to eliminate infection, but some of them also play a major role in shaping the magnitude and efficacy of the adaptive immune response. With regard to influencing subsequent adaptive immunity, NK cells aided by dendritic cells may be the most relevant components of the innate reaction to herpes simplex virus (HSV) infection. We confirm that mice lacking or depleted of NK cells are susceptible to HSV-induced lesions. The quantity and quality of CD8(+) cytotoxic T lymphocytes generated in the absence of NK cells were diminished, thereby contributing to susceptibility to HSV-induced encephalitis. We demonstrate a novel helper role for NK cells, in that NK cells compensate for the loss of CD4 helper T cells and NK cell supplementation enhances the function of wild type anti-HSV CD8 T cells. In addition, NK cells were able to partially rescue the dysfunctional CD8(+) T cells generated in the absence of CD4 T helper cells, thereby performing a novel rescue function. Hence, NK cells may well be exploited for enhancing and rescuing the T-cell response in situations where the CD4 helper response is affected.  相似文献   

7.
AIDS: a syndrome of immune dysregulation, dysfunction, and deficiency   总被引:14,自引:0,他引:14  
Acquired immune deficiency syndrome (AIDS) is a disease caused by the human immunodeficiency virus (HIV) in which cellular immune functions are severely impaired. Acute infection and subsequent destruction of helper T cells, although occurring readily in cell cultures, do not appear to be the only mechanisms mediating helper T cell loss. Other mechanisms that may account for the loss of helper T cells include: T cell syncytia formation, decreased T cell production, and autoimmune-related destruction of helper T cells. Immune abnormalities seen early in the course of HIV infection include immune hyperactivation and autoimmune phenomena suggestive of immune dysregulation rather than immune deficiency. Many changes in immune function are, in fact, seen in HIV-seropositive patients who possess a normal number of helper T cells. Mechanisms (other than the loss of helper T cells) that may contribute to the immune abnormalities seen in these patients include noninfectious effects of HIV and HIV proteins, effects of HIV on non-T cells, autoimmune-related manifestations of HIV infection, and HIV-induced activation of normal immunosuppressive circuits.  相似文献   

8.
Parasitic nematode infections of humans and livestock continue to impose a significant public health and economic burden worldwide. Murine models of intestinal nematode infection have proved to be relevant and tractable systems to define the cellular and molecular basis of how the host immune system regulates resistance and susceptibility to infection. While susceptibility to chronic infection is propagated by T helper cell type 1 cytokine responses (characterised by production of IL-12, IL-18 and interferon-gamma), immunity to intestinal-dwelling adult nematode worms is critically dependent on a type 2 cytokine response (controlled by CD4+T helper type 2 cells that secrete the cytokines IL-4, IL-5, IL-9 and IL-13). However, the immune effector mechanisms elicited by type 2 cytokines in the gut microenvironment that precipitate worm expulsion have remained elusive. This review focuses on new studies that implicate host intestinal epithelial cells as one of the dominant immune effector cells against this group of pathogens. Specifically, three recently identified type 2 cytokine-dependent pathways that could offer insights into the mechanisms of expulsion of parasitic nematodes will be discussed: (i) the intelectins, a new family of galactose-binding lectins implicated in innate immunity, (ii) the resistin-like molecules, a family of small cysteine-rich proteins expressed by multiple cell types, and (iii) cytokine regulation of intestinal epithelial cell turnover. Identifying how the mammalian immune response fights gastrointestinal nematode infections is providing new insights into host protective immunity. Harnessing these discoveries, coupled with identifying what the targets of these responses are within parasitic nematodes, offers promise in the design of a new generation of anti-parasitic drugs and vaccines.  相似文献   

9.
Kang SM  Yoo DG  Kim MC  Song JM  Park MK  O E  Quan FS  Akira S  Compans RW 《Journal of virology》2011,85(21):11391-11400
We investigated the roles of MyD88, an innate adaptor signaling molecule, in inducing protective humoral immunity after vaccination with influenza virus-like particles (VLPs). MyD88 knockout C57BL/6 mice (MyD88(-/-) mice) vaccinated with influenza VLPs showed significant defects in inducing IgG2a/c isotype antibodies and in generating splenic recall memory B cell responses and antibody-secreting plasma cells in the bone marrow. The protective efficacy of influenza VLP vaccination was lower in MyD88(-/-) mice than in the wild-type mice. Our findings indicate that MyD88-mediated innate signaling pathways are important for effectively inducing primary and boost immune responses, T helper type 1 isotype-switched antibodies, and gamma interferon (IFN-γ)-secreting T cell responses. In particular, the results in this study demonstrated for the first time that MyD88-mediated immune activation is likely an essential pathway for effective generation of long-lived antibody-secreting plasma cells and highly protective immunity after vaccination with influenza VLPs. This study provides insight into mechanisms by which recombinant viral vaccines induce protective immunity via the MyD88-mediated innate immune signaling pathway.  相似文献   

10.
Dendritic cells (DCs) and natural killer (NK) cells are central components of innate immunity for controlling tumor growth. The therapeutic effects of certain anti-myeloma drugs are partially mediated by targeting the innate immune response. In addition, novel types of natural compounds have been developed that efficiently modulate the activity of both the cellular and humoral compartments of immunity. MGN-3 is known as an activator of natural killer cells, inducer of apoptosis and cytokine production, and modulator of dendritic cell maturation and differentiation in vitro. We have performed a randomized, placebo-controlled study to examine the effects of MGN-3 on innate immune system parameters in 48 multiple myeloma patients. We performed immunophenotypic analysis of peripheral blood samples, determined NK cell activity, and assessed the cytokine profiles of plasma before and during 3 months of treatment. The results demonstrate a clear increase in NK activity in MGN-3-treated patients compared to the placebo group, an increased level of myeloid DCs in peripheral blood, and augmented concentrations of T helper cell type 1-related cytokines. The present study suggests that MGN-3 may represent an immunologically relevant product for activating innate immunity in multiple myeloma patients and warrants further testing to demonstrate clinical efficacy.  相似文献   

11.
12.
Lee WW  Lee N  Fujii H  Kang I 《Cellular immunology》2012,275(1-2):19-23
The differentiation of T helper (Th) cells is critically dependent on cytokine milieu. The innate immune monocytes produce IL-1β which can affect the development of Th17 and Th1 cells that predominantly produce IL-17 and IFN-γ, respectively. Oligosaccharides from microorganisms, crops and mushrooms can stimulate innate immune cells. Active Hexose Correlated Compound (AHCC) that contains a large amount of oligosaccharides is a natural extract prepared from the mycelium of the edible Basidiomycete fungus. This compound is reported to modulate immune responses against pathogens although the mechanisms for this effect are largely unknown. Here we show that AHCC could induce high levels of IL-1β production from human monocytes. Furthermore, AHCC-treated monocytes increased the production of IL-17 and IFN-γ from autologous CD4(+) T cells, which was blocked by adding IL-1 receptor antagonist. These finding provide new insight into how food supplements like AHCC could enhance human immunity by modulating monocytes and Th cells.  相似文献   

13.
Evolution of the immunomodulatory role of the heat shock protein gp96.   总被引:2,自引:0,他引:2  
In mammals, certain heat shock proteins (hsps) participate in specialized responses to stressors associated with pathogens or tumors, and as such, act as agents of immune surveillance interacting with both innate and adaptive immunity. We are investigating the conservation of this role throughout the class of vertebrates. We have shown that in Xenopus as in mammals, gp96, the major resident of the endoplasmic reticulum, generates MHC-restricted thymus-dependent immunity in vivo and CR in vitro against minor histocompatibility (H) antigens. By as yet unclear mechanisms that may involve classical MHC-unrestricted cytotoxic CD8+ T cells, gp96 also elicits peptide-specific responses against MHC-class I-negative tumors in adult frogs that may involve cytotoxic NK, MHC-unrestricted CD8+ T and NK/T cells. In naturally MHC class I-deficient but immunocompetent Xenopus larvae, gp96 also generates an innate type of anti-tumor response that is independent of chaperoned peptides. Finally, in a subset of Xenopus sIgM+ B cells, a substantial fraction of gp96 is directed to the cell surface by an active process that is upregulated by bacterial stimulation. This may allow gp96 to access the extracellular compartment without necrosis. Given the dual abilities of gp96 to chaperone antigenic peptides and to modulate innate immune responses, we propose that stimulated B cells that are up-regulating surface gp96 can directly interact with antigen presenting cells (APC) and/or T helper (Th) cells to trigger or amplify immune responses.  相似文献   

14.
Immune cells are often exposed to low oxygen tensions, which markedly affect cellular metabolism. We describe how activated T cells adapt to the changing energy supplies in hypoxic areas of inflamed tissues by using hypoxia-inducible factor 1 (HIF1) to switch to glycolysis as the main source of energy and by signalling through extracellular-adenosine receptors. This hypoxic regulation might alter the balance between T helper 1 cells and T helper 2 cells and might alter the activities of cells of the innate immune system, thereby qualitatively and quantitatively affecting immune responses. This regulatory mechanism should be taken into account in the design and interpretation of in vitro and in vivo studies of immune-cell effector functions.  相似文献   

15.
Neutrophils, dendritic cells and Toxoplasma   总被引:7,自引:0,他引:7  
Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.  相似文献   

16.
Zinc is an essential trace element with a critical role in normal growth and development and in immune homeostasis. Zinc deficiency impairs both the innate and the adaptive immune system and can be normalized by zinc supplementation. On the other end of the spectrum, high dosages of zinc diminish immune cell functions similar to zinc deficiency. Here, we investigated the influence of zinc aspartate on proliferation and cytokine production of stimulated human T cells and mouse splenocytes in vitro. Furthermore, the effect of zinc aspartate was examined in mice with experimental autoimmune encephalomyelitis (EAE), an animal model of Multiple Sclerosis (MS) with a Th1/Th17 T cell-mediated immunopathogenesis. Zinc aspartate suppressed proliferation as well as IL-2, IL-10 and IL-17 production in stimulated human T cells and mouse splenocytes. Importantly, administration of a medium range dose of 30 μg/day zinc aspartate [1.5 mg/kg body weight (BW)] in a therapeutic manner led to a significant reduction of the clinical severity of the EAE during the first relapse of the disease. A lower zinc aspartate dose (6 μg/day, 0.3 mg/kg BW) had no significant therapeutic effect on the severity of the EAE, while administration of higher zinc aspartate amounts (120 μg/day, 6 mg/kg BW) led to more severe disease. Taken together, our data suggest that zinc aspartate can modulate activation, proliferation and cytokine production of effector T cells in vitro and in vivo and that activated autoreactive T cells may be potential therapeutic targets of tightly controlled zinc supplementation in autoimmune diseases like MS.  相似文献   

17.
Holgate ST 《Nature medicine》2012,18(5):673-683
The recognition that asthma is primarily an inflammatory disorder of the airways associated with T helper type 2 (T(H)2) cell-dependent promotion of IgE production and recruitment of mast cells and eosinophils has provided the rationale for disease control using inhaled corticosteroids and other anti-inflammatory drugs. As more has been discovered about the cytokine, chemokine and inflammatory pathways that are associated with T(H)2-driven adaptive immunity, attempts have been made to selectively inhibit these in the hope of discovering new therapeutics as predicted from animal models of allergic inflammation. The limited success of this approach, together with the recognition that asthma is more than allergic inflammation, has drawn attention to the innate immune response in this disease. Recent advances in our understanding of the sentinel role played by innate immunity provides new targets for disease prevention and treatment. These include pathways of innate stimulation by environmental or endogenous pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) to influence the activation and trafficking of DCs, innate sources of cytokines, and the identification of new T cell subsets and lymphoid cells.  相似文献   

18.
The disabled dendritic cell.   总被引:6,自引:0,他引:6  
Dendritic cells are important antigen-presenting cells of the immune system that induce and modulate immune responses. They interact with T and B lymphocytes as well as with natural killer cells to promote activation and differentiation of these cells. Dendritic cells generated in vitro from monocytes by use of the cytokines GM-CSF and IL-4 are increasingly used clinically to enhance antitumor immunity in cancer patients. However, recent studies revealed that the functional repertoire of monocyte-derived dendritic cells may be incomplete. Important functions of monocyte-derived dendritic cells such as migration or the ability to induce natural killer cell activation or type 2 T helper cell differentiation appear to be impaired. We propose that all these deficiencies relate to a single biochemical deficiency of monocyte-derived dendritic cells. IL-4, which is used to generate monocyte-derived dendritic cells, suppresses phospholipase A2, the enzyme that liberates arachidonic acid from membrane phospholipids and contributes to the synthesis of platelet-activating factor. Monocyte-derived dendritic cells must therefore fail to generate platelet-activating factor as well as arachidonic acid derivatives such as prostaglandins, leukotrienes, and lipoxins, collectively referred to as eicosanoids. Since eicosanoids and platelet-activating factor are known to play an important role in processes such as leukocyte migration, natural killer cell activation, and type 2 T helper cell differentiation, the deficiency in eicosanoid and platelet-activating factor biosynthesis may be responsible for the observed handicaps of monocyte-derived dendritic cells.  相似文献   

19.
NK cells possess both effector and regulatory activities that may be important during the antitumor immune response. In fact, the generation of antitumor immunity by the administration of an agonistic mAb against CD137 is NK cell-dependent. In this study, we report that NK cells could be induced by IL-2 and IL-15 to express CD137 and ligation of CD137-stimulated NK cell proliferation and IFN-gamma secretion, but not their cytolytic activity. Importantly, CD137-stimulated NK cells promoted the expansion of activated T cells in vitro, demonstrating immunoregulatory or "helper" activity for CD8(+)CTL. Furthermore, tumor-specific CTL activity against P815 tumor Ags was abrogated following anti-CD137 treatment in NK-depleted mice. We further demonstrate that CD137-stimulated helper NK cells expressed the high-affinity IL-2R and were hyperresponsive to IL-2. Taken together with previous findings that CD137 is a critical receptor for costimulation of T cells, our findings suggest that CD137 is a stimulatory receptor for NK cells involved in the crosstalk between innate and adaptive immunity.  相似文献   

20.
Known for years as the principal messengers of the immune system, dendritic cells (DC) represent a heterogeneous population of antigen presenting cells critically located at the nexus between innate and adaptive immunity. DC play a central role in the initiation of tumor-specific immune responses as they are endowed with the unique ability to take up, process and present tumor antigens to naïve CD4+ or CD8+ effector T lymphocytes. By virtue of the cytokines they produce, DC also regulate the type, strength and duration of T cell immune responses. In addition, they can participate in anti-tumoral NK and NKT cell activation and in the orchestration of humoral immunity. More recent studies have documented that besides their primary role in the induction and regulation of adaptive anti-tumoral immune responses, DC are also endowed with the capacity to directly kill cancer cells. This dual role of DC as killers and messengers may have important implications for tumor immunotherapy. First, the direct killing of malignant cells by DC may foster the release and thereby the immediate availability of specific tumor antigens for presentation to cytotoxic or helper T lymphocytes. Second, DC may participate in the effector phase of the immune response, potentially augmenting the diversity of the killing mechanisms leading to tumor elimination. This review focuses on this non-conventional cytotoxic function of DC as it relates to the promotion of cancer immunity and discusses the potential application of killer DC (KDC) in tumor immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号