首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The two-step dilute acid hydrolysis (DAH) of softwood is costly in energy demands and capital costs. However, it has the advantage that hydrolysis and subsequent removal of hemicellulose-derived sugars can be carried out under conditions of low severity, resulting in a reduction in the level of sugar degradation products during the more severe subsequent steps of cellulose hydrolysis. In this paper, we discuss a single-step DAH method that incorporates a temperature profile at two levels. This profile should simulate the two-step process while removing its major disadvantage, that is, the washing step between the runs, which leads to increased energy demand.

Results

The experiments were conducted in a reactor with a controlled temperature profile. The total dry matter content of the hydrolysate was up to 21.1% w/w, corresponding to a content of 15.5% w/w of water insoluble solids. The highest measured glucose yield, (18.3 g glucose per 100 g dry raw material), was obtained after DAH cycles of 3 min at 209°C and 6 min at 211°C with 1% H2SO4, which resulted in a total of 26.3 g solubilized C6 sugars per 100 g dry raw material. To estimate the remaining sugar potential, enzymatic hydrolysis (EH) of the solid fraction was also performed. EH of the solid residue increased the total level of solubilized C6 sugars to a maximum of 35.5 g per 100 g dry raw material when DAH was performed as described above (3 min at 210°C and 2 min at 211°C with 1% H2SO4).

Conclusion

The dual-temperature DAH method did not yield decisively better results than the single-temperature, one-step DAH. When we compared the results with those of earlier studies, the hydrolysis performance was better than with the one-step DAH but not as well as that of the two-step, single-temperature DAH. Additional enzymatic hydrolysis resulted in lower levels of solubilized sugars compared with other studies on one-step DAH and two-step DAH followed by enzymatic hydrolysis. A two-step steam pretreatment with EH gave rise to a considerably higher sugar yield in this study.  相似文献   

2.
Because conventional approaches for evaluating sugar release from the coupled operations of pretreatment and enzymatic hydrolysis are extremely time and material intensive, high throughput (HT) pretreatment and enzymatic hydrolysis systems have become vital for screening large numbers of lignocellulosic biomass samples to identify feedstocks and/or processing conditions that significantly improve performance and lower costs. Because dilute acid pretreatment offers many important advantages in rendering biomass highly susceptible to subsequent enzymatic hydrolysis, a high throughput pretreatment and co‐hydrolysis (HTPH) approach was extended to employ dilute acid as a tool to screen for enhanced performance. First, a single‐step neutralization and buffering method was developed to allow effective enzymatic hydrolysis of the whole pretreated slurry. Switchgrass and poplar were then pretreated with 0.5% and 1% acid loadings at a 5% solids concentration, the resulting slurry conditioned with the buffering approach, and the entire mixture enzymatically hydrolyzed. The resulting sugar yields demonstrated that single‐step neutralizing and buffering was capable of adjusting the pH as needed for enzymatic saccharification, as well as overcoming enzyme inhibition by compounds released in pretreatment. In addition, the effects of pretreatment conditions and biomass types on susceptibility of pretreated substrates to enzymatic conversion were clearly discernible, demonstrating the method to be a useful extension of HTPH systems. Biotechnol. Bioeng. 2013; 110: 754–762. © 2012 Wiley Periodicals, Inc.  相似文献   

3.

Background  

Lignocellulosic biomass such as wood is an attractive material for fuel ethanol production. Pretreatment technologies that increase the digestibility of cellulose and hemicellulose in the lignocellulosic biomass have a major influence on the cost of the subsequent enzymatic hydrolysis and ethanol fermentation processes. Pretreatments without chemicals such as acids, bases or organic solvents are less effective for an enzymatic hydrolysis process than those with chemicals, but they have a less negative effect on the environment.  相似文献   

4.
为了提高沙柳生物转化过程的经济可行性,考察了沙柳原料经过蒸爆、超微粉碎+稀酸、超微粉碎+稀碱预处理后高浓度底物补料酶解的效果,并对其高浓度水解糖液进行了乙醇发酵。结果表明:蒸爆处理法水解效果最好,通过补料酶解,底物质量分数可以达到30%,酶解液中总糖质量浓度达到132 g/L,葡萄糖质量浓度105 g/L;超微粉碎+稀酸预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度达到123 g/L,葡萄糖质量浓度73 g/L;超微粉碎+稀碱预处理原料底物质量分数可以达到22%,酶解液中总糖质量浓度133 g/L,葡萄糖质量浓度77 g/L。3种预处理使沙柳原料的酶解糖液都可以较好地被酿酒酵母利用发酵产乙醇,蒸爆处理原料的酶解糖液乙醇发酵效果最好,乙醇质量浓度达到47 g/L。  相似文献   

5.
Calculation of true sugar yields in high solids enzymatic hydrolysis of biomass is challenging due to the varying liquid density and liquid volume resulting from solid solubilization. Ignoring these changes in yield calculations can lead to significant errors. In this paper, a mathematical method was developed for the estimation of liquid volume change and thereafter the sugar yield. The information needed in the calculations include the compositions of the substrate, initial solids loading, initial liquid density, and sugar concentrations before and after hydrolysis. All of these variables are measurable with conventional laboratory procedures. This method was validated experimentally for enzymatic hydrolysis of dilute sulfuric acid pretreated corn stover at solid loadings up to 23% (w/w). The maximum relative error of predicted glucose yield from the true value was less than 4%. Compared to other methods reported in the literature, this method is relatively easy to use and provides good accuracy.  相似文献   

6.
A laboratory reactor equipped with a screw press was used for the hydrolysis of steam-SO2-exploded willowSalix caprea by a composition ofTrichoderma reesei andAspergillus foetidus enzyme preparations at high substrate concentration. Optimal conditions providing the maximal volume of hydrolysis syrup with maximal sugar concentrations were determined. Two different hydrolysis procedures were developed in order to exclude the initial washing of steam-pretreated plant raw material by large volumes of water, which was necessary to eliminate the inhibitory effect of explosion byproducts on enzymatic hydrolysis. The first procedure included enzymatic prehydrolysis of the substrate for 1 h; separation of sugar syrup containing 40–60 g/l glucose, 20–25 g/l xylose, and up to 10 g/l disaccharides, as well as up to 35% of the initial enzymatic activity; then addition of a diluted acetate buffer (pH 4.5); and subsequent hydrolysis of the substrate by the adsorbed enzymes leading to the final accumulation of up to 140 g/l glucose and up to 15 g/l of xylose. In the second scenario, the exploded willow was initially adjusted by alkali to pH 4.5 and then hydrolyzed directly by the added enzymes over 24 h. This procedure resulted in a nearly total polysaccharide hydrolysis and accumulation of up to 170 g/l glucose and 20 g/l xylose. The reasons for inhibition of enzymatic hydrolysis are discussed. Deceased.  相似文献   

7.
A combined hydrolysis factor (CHF) was developed to predict xylan hydrolysis during pretreatments of native aspen (Populus tremuloides) wood chips. A natural extension of previously developed kinetic models allowed us to account for the effect of catalysts by dilute acid and two sulfite pretreatments at different pH values. When xylan is modeled as two fractions with different hydrolysis rates, previously identified as fast and slow xylan, the model closely matches the experimental data. Extent of xylan hydrolysis is strongly correlated with pretreatment solids yield, energy consumption for size reduction, and substrate enzymatic digestibility (SED). Composition of the pretreatment hydrolysate was less correlated with extent of hydrolysis due to carbohydrate decomposition reactions. Substrate cellulose enzymatic conversion and enzymatic hydrolysis glucose yield can be predicted to approximately 10% accuracy using CHF alone.  相似文献   

8.

Background

For biofuel production processes to be economically efficient, it is essential to maximize the production of monomeric carbohydrates from the structural carbohydrates of feedstocks. One strategy for maximizing carbohydrate production is to identify less recalcitrant feedstock cultivars by performing some type of experimental screening on a large and diverse set of candidate materials, or by identifying genetic modifications (random or directed mutations or transgenic plants) that provide decreased recalcitrance. Economic efficiency can also be increased using additional pretreatment processes such as deacetylation, which uses dilute NaOH to remove the acetyl groups of hemicellulose prior to dilute acid pretreatment. In this work, we used a laboratory-scale screening tool that mimics relevant thermochemical pretreatment conditions to compare the total sugar yield of three near-isogenic brown midrib (bmr) mutant lines and the wild-type (WT) sorghum cultivar. We then compared results obtained from the laboratory-scale screening pretreatment assay to a large-scale pretreatment system.

Results

After pretreatment and enzymatic hydrolysis, the bmr mutants had higher total sugar yields than the WT sorghum cultivar. Increased pretreatment temperatures increased reactivity for all sorghum samples reducing the differences observed at lower reaction temperatures. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples, and reduced the differences in total sugar yields among them, but solubilized a sizable fraction of the non-structural carbohydrates. The general trends of increased total sugar yield in the bmr mutant compared to the WT seen at the laboratory scale were observed at the large-scale system. However, in the larger reactor system, the measured total sugar yields were lower and the difference in total sugar yield between the WT and bmr sorghum was larger.

Conclusions

Sorghum bmr mutants, which have a reduced lignin content showed higher total sugar yields than the WT cultivar after dilute acid pretreatment and enzymatic hydrolysis. Deacetylation prior to dilute acid pretreatment increased the total sugar yield for all four sorghum samples. However, since deacetylation also solubilizes a large fraction of the non-structural carbohydrates, the ability to derive value from these solubilized sugars will depend greatly on the proposed conversion process.
  相似文献   

9.
A number of previous studies determined dilute acid pretreatment conditions that maximize xylose yields from pretreatment or glucose yields from subsequent digestion of the pretreated cellulose, but our emphasis was on identifying conditions to realize the highest yields of both sugars from both stages. Thus, individual xylose and glucose yields are reported as a percentage of the total potential yield of both sugars over a range of sulfuric acid concentrations of 0.22%, 0.49% and 0.98% w/w at 140, 160, 180 and 200 degrees C. Up to 15% of the total potential sugar in the substrate could be released as glucose during pretreatment and between 15% and 90+% of the xylose remaining in the solid residue could be recovered in subsequent enzymatic hydrolysis, depending on the enzyme loading. Glucose yields increased from as high as 56% of total maximum potential glucose plus xylose for just enzymatic digestion to 60% when glucose released in pretreatment was included. Xylose yields similarly increased from as high as 34% of total potential sugars for pretreatment alone to between 35% and 37% when credit was taken for xylose released in digestion. Yields were shown to be much lower if no acid was used. Conditions that maximized individual sugar yields were often not the same as those that maximized total sugar yields, demonstrating the importance of clearly defining pretreatment goals when optimizing the process. Overall, up to about 92.5% of the total sugars originally available in the corn stover used could be recovered for coupled dilute acid pretreatment and enzymatic hydrolysis. These results also suggest that enhanced hemicellulase activity could further improve xylose yields, particularly for low cellulase loadings.  相似文献   

10.

Background  

Corn stover composition changes considerably throughout the growing season and also varies between the various fractions of the plant. These differences can impact optimal pretreatment conditions, enzymatic digestibility and maximum achievable sugar yields in the process of converting lignocellulosics to ethanol. The goal of this project was to determine which combination of corn stover fractions provides the most benefit to the biorefinery in terms of sugar yields and to determine the preferential order in which fractions should be harvested. Ammonia fiber expansion (AFEX) pretreatment, followed by enzymatic hydrolysis, was performed on early and late harvest corn stover fractions (stem, leaf, husk and cob). Sugar yields were used to optimize scenarios for the selective harvest of corn stover assuming 70% or 30% collection of the total available stover.  相似文献   

11.
In process integration studies of the biomass-to-ethanol conversion process, it is necessary to understand how cellulose conversion yields vary as a function of solids and enzyme loading and other key operating variables. The impact of solids loading on enzymatic cellulose hydrolysis of dilute acid pretreated corn stover slurry was determined using an experimental response surface design methodology. From the experimental work, an empirical correlation was obtained that expresses monomeric glucose yield from enzymatic cellulose hydrolysis as a function of solids loading, enzyme loading, and temperature. This correlation was used in a technoeconomic model to study the impact of solids loading on ethanol production economics. The empirical correlation was used to provide a more realistic assessment of process cost by accounting for changes in cellulose conversion yields at different solids and enzyme loadings as well as enzyme cost. As long as enzymatic cellulose conversion drops off at higher total solids loading (due to end-product inhibition or other factors), there is an optimum value for the total solids loading that minimizes the ethanol production cost. The optimum total solids loading shifts to higher values as enzyme cost decreases.  相似文献   

12.
The rates and extents of enzymatic cellulose hydrolysis of dilute acid pretreated corn stover (PCS) decline with increasing slurry concentration. However, mass transfer limitations are not apparent until insoluble solids concentrations approach 20% w/w, indicating that inhibition of enzyme hydrolysis at lower solids concentrations is primarily due to soluble components. Consequently, the inhibitory effects of pH-adjusted pretreatment liquor on the enzymatic hydrolysis of PCS were investigated. A response surface methodology (RSM) was applied to empirically model how hydrolysis performance varied as a function of enzyme loading (12-40mg protein/g cellulose) and insoluble solids concentration (5-13%) in full-slurry hydrolyzates. Factorial design and analysis of variance (ANOVA) were also used to assess the contribution of the major classes of soluble components (acetic acid, phenolics, furans, sugars) to total inhibition. High sugar concentrations (130g/L total initial background sugars) were shown to be the primary cause of performance inhibition, with acetic acid (15g/L) only slightly inhibiting enzymatic hydrolysis and phenolic compounds (9g/L total including vanillin, syringaldehyde, and 4-hydroxycinnamic acid) and furans (8g/L total of furfural and hydroxymethylfurfural, HMF) with only a minor effect on reaction kinetics. It was also demonstrated that this enzyme inhibition in high-solids PCS slurries can be approximated using a synthetic hydrolyzate composed of pure sugars supplemented with a mixture of acetic acid, furans, and phenolic compounds, which indicates that generally all of the reaction rate-determining soluble compounds for this system can be approximated synthetically.  相似文献   

13.
In enzymatic hydrolysis, high lignocellulose loadings are required to obtain high sugar titers. However, the high solids loadings limit enzymatic hydrolysis. In this study, to overcome this limitation, the promoting and synergistic effects of the accessory agents of hemicellulase (i.e., Cellic HTec2) and polyethylene glycol (PEG) 8000 were investigated in the enzymatic hydrolysis of hydrothermally pretreated empty fruit bunches (EFBs). After the optimal addition of Cellic HTec2 and PEG, high enzymatic digestion of the pretreated EFBs was achieved owing to their synergistic effects, even at high solids loadings. For example, the enzymatic digestibility of pretreated EFBs at a 21.7% (w/v) solids loading with 10 FPU of Cellic CTec2/g glucan reached 72.5% when 2.7 mg of Cellic HTec2/g glucan and 62.5 mg of PEG/g glucan were used as the accessory agents. These results suggested that the optimal addition of accessory agents is effective for the enhanced hydrolysis of lignocellulose using even a commercial cellulase preparation.  相似文献   

14.
Miscanthus x giganteus is a tall perennial grass whose suitability as an energy crop is presently being appraised. There is very little information on the effect of pretreatment and enzymatic saccharification of Miscanthus to produce fermentable sugars. This paper reports sugar yields during enzymatic hydrolysis from ammonia fiber expansion (AFEX) pretreated Miscanthus. Pretreatment conditions including temperature, moisture, ammonia loading, residence time, and enzyme loadings are varied to maximize hydrolysis yields. In addition, further treatments such as soaking the biomass prior to AFEX as well as washing the pretreated material were also attempted to improve sugar yields. The optimal AFEX conditions determined were 160 degrees C, 2:1 (w/w) ammonia to biomass loading, 233% moisture (dry weight basis), and 5 min reaction time for water-soaked Miscanthus. Approximately 96% glucan and 81% xylan conversions were achieved after 168 h enzymatic hydrolysis at 1% glucan loading using 15 FPU/(g of glucan) of cellulase and 64 p-NPGU/(g of glucan) of beta-glucosidase along with xylanase and tween-80 supplementation. A mass balance for the AFEX pretreatment and enzymatic hydrolysis process is presented.  相似文献   

15.
Qi B  Chen X  Su Y  Wan Y 《Bioresource technology》2011,102(3):2881-2889
The objective of this research was to investigate cellulase adsorption and recycling during enzymatic hydrolysis of two differently pretreated wheat straws (WS). Dilute acid treated WS showed lower hydrolysis yield of polysaccharides fraction and adsorbed more cellulase with hydrolyzed residue than dilute alkali treated sample. Four methods capable of recovering and recycling the enzyme bound to the residual substrate and the enzyme free in solution were used for three consecutive rounds of hydrolysis to compare their recycling efficiencies. Compared to the absorption recycling method, ultrafiltration recycling method possessed the capacity to retain β-glucosidase, thereby avoiding the supplementation of fresh β-glucosidase in subsequent rounds of hydrolysis. It was found that whatever recycling method was used, better recycling results were obtained for dilute alkali treated substrate than for dilute acid treated substrate. These results suggested that the great difference in the lignin content between acid treated WS and alkali treated WS would significantly affect enzymatic hydrolysis, cellulase adsorption and cellulase recycling efficiencies.  相似文献   

16.

Background  

In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glucose benefits from improved enzymatic digestibility of wheat straw solids; (2) xylose benefits from the solubilization of xylan to the liquid phase during the pretreatment; (3) maleic acid replenishment costs; (4) neutralization costs of pretreated material; (5) costs due to furfural production; and (6) heating costs of the input materials. For each response factor, experimental data were fitted mathematically. After data translation to €/Mg dry straw, determining the relative contribution of each response factor, an economic optimization was calculated within the limits of the design variables.  相似文献   

17.
Olive stones are an agro-industrial by-product abundant in the Mediterranean area that is regarded as a potential lignocellulosic feedstock for sugar production. Statistical modeling of dilute-sulphuric acid hydrolysis of olive stones has been performed using a response surface methodology, with treatment temperature and process time as factors, to optimize the hydrolysis conditions aiming to attain maximum d-xylose extraction from hemicelluloses. Thus, solid yield and composition of solid and liquid phases were assessed by empirical modeling. The highest yield of d-xylose was found at a temperature of 195 °C for 5 min. Under these conditions, 89.7% of the total d-xylose was recovered from raw material. The resulting solids from optimal conditions were assayed as substrate for enzymatic hydrolysis, while fermentability of hemicellulosic hydrolysates was tested using the d-xylose-fermenting yeast Pachysolen tannophilus. Both bioprocesses were considerably influenced by enzyme loading and inoculum size. In the enzymatic hydrolysis step, about 56% of cellulose was converted into d-glucose by using an enzyme/solid ratio of 40 FPU g−1, while in the fermentation carried out with a cell concentration of 2 g L−1 a yield of 0.44 g xylitol/g d-xylose and a global volumetric productivity of 0.11 g L−1 h−1 were achieved.  相似文献   

18.
A cycle spray flow-through reactor was designed and used to pretreat corn stover in dilute sulfuric acid medium. The dilute sulfuric acid cycle spray flow-through (DCF) process enhanced xylose sugar yields and cellulose digestibility while increasing the removal of lignin. Within the DCF system, the xylose sugar yields of 90–93% could be achieved for corn stover pretreated with 2% (w/v) dilute sulfuric acid at 95 °C during the optimal reaction time (90 min). The remaining solid residue exhibited enzymatic digestibility of 90–95% with cellulase loading of 60 FPU/g glucan that was due to the effective lignin removal (70–75%) in this process. Compared with flow-through and compress-hot water pretreatment process, the DCF method produces a higher sugar concentration and higher xylose monomer yield. The novel DCF process provides a feasible approach for lignocellulosic material pretreatment.  相似文献   

19.

Background

Biomass use for the production of bioethanol or platform chemicals requires efficient breakdown of biomass to fermentable monosaccharides. Lignocellulosic feedstocks often require physicochemical pretreatment before enzymatic hydrolysis can begin. The optimal pretreatment can be different for different feedstocks, and should not lead to biomass destruction or formation of toxic products.

Methods

We examined the influence of six mild sulfuric acid or water pretreatments at different temperatures on the enzymatic degradability of sugar-beet pulp (SBP).

Results

We found that optimal pretreatment at 140°C of 15 minutes in water was able to solubilize 60% w/w of the total carbohydrates present, mainly pectins. More severe treatments led to the destruction of the solubilized sugars, and the subsequent production of the sugar-degradation products furfural, hydroxymethylfurfural, acetic acid and formic acid. The pretreated samples were successfully degraded enzymatically with an experimental cellulase preparation.

Conclusions

In this study, we found that pretreatment of SBP greatly facilitated the subsequent enzymatic degradation within economically feasible time ranges and enzyme levels. In addition, pretreatment of SBP can be useful to fractionate functional ingredients such as arabinans and pectins from cellulose. We found that the optimal combined severity factor to enhance the enzymatic degradation of SBP was between log R'0 = -2.0 and log R'0 = -1.5. The optimal pretreatment and enzyme treatment solubilized up to 80% of all sugars present in the SBP, including ≥90% of the cellulose.  相似文献   

20.
Pine, eucalyptus, and switchgrass were evaluated for the production of fermentable sugars via ionic liquid and dilute acid pretreatments and subsequent enzymatic hydrolysis. The results show that among the three feedstocks, switchgrass has the highest sugar yields and faster hydrolysis rates for both pretreatment technologies by achieving 48 % (dilute acid) and 96 % (ionic liquid) sugar yields after 24 h. Of the two wood species, eucalyptus has a higher and faster sugar recovery after ionic liquid pretreatment than pine (93 vs. 62 % in 24 h) under 160 °C for 3 h with [C2mim][OAc]. Pretreatment of pine and eucalyptus is observed to be ineffective under 1.2 % dilute acid condition and 160 °C for 15 min, indicating that further enhancement of reaction temperature or acid concentration is necessary to increase the digestibility of pretreated materials. Raman spectroscopy data show that the extent of lignin depolymerization that occurs during pretreatment also varies for the three different feedstocks. Under similar hemicellulose removal conditions, lignin removal in ionic liquid pretreatment can help improve cellulose conversion. This finding may help explain the observed variation in the saccharification yields and kinetics. These results indicate that ionic liquid pretreatment not only improved saccharification over dilute acid for all three feedstocks but also better dealt with the differences among them, suggesting better tolerance to feedstock variability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号