首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of transketolase substrates on the interaction of apotransketolase with its coenzyme thiamine diphosphate (TDP) and on the stability of the reconstituted holoenzyme was studied. Donor substrates increased the affinity of the coenzyme for transketolase, whereas acceptor substrate did not. In the presence of magnesium ions, the active centers of transketolase initially identical in TDP binding lose their equivalence in the presence of donor substrates. The stability of transketolase depended on the cation type used during its reconstitution--the holoenzyme reconstituted in the presence of calcium ions was more stable than the holoenzyme produced in the presence of magnesium ions. In the presence of donor substrate, the holoenzyme stability increased without depending on the cation used during the reconstitution. Donor substrate did not influence the interaction of apotransketolase with the inactive analog of the coenzyme N3'-pyridyl thiamine diphosphate and did not stabilize the transketolase complex with this analog. The findings suggest that the effect of the substrate on the interaction of the coenzyme with apotransketolase and on stability of the reconstituted holoenzyme is caused by generation of 2-(alpha,beta-dihydroxyethyl)thiamine diphosphate (an intermediate product of the transketolase reaction), which has higher affinity for apotransketolase than TDP.  相似文献   

2.
The influence of substrates on the interaction of apotransketolase with thiamin diphosphate was investigated in the presence of magnesium ions. It was shown that the donor substrates, but not the acceptor substrates, enhance the affinity of the coenzyme either to only one active center of transketolase or to both active centers, but to different degrees in each, resulting in a negative cooperativity for coenzyme binding. In the absence of donor substrate, negative cooperativity is not observed. The donor substrate did not affect the interaction of the apoenzyme with the inactive coenzyme analogue, N3'-pyridyl-thiamin diphosphate. The influence of the donor substrate on the coenzyme-apotransketolase interaction was predicted as a result of formation of the transketolase reaction intermediate 2-(alpha,beta-dihydroxyethyl)-thiamin diphosphate, which exhibited a higher affinity to the enzyme than thiamin diphosphate. The enhancement of thiamin diphosphate's affinity to apotransketolase in the presence of donor substrate is probably one of the mechanisms underlying the substrate-affected transketolase regulation at low coenzyme concentrations.  相似文献   

3.
Rat lung mitochondrial preparations were incubated in the presence of pyruvate and malate. The principal metabolic products measured were citrate and CO2. Citrate formation from pyruvate was found to be dependent on the presence of malate. Significant citrate was formed in the presence of isocitrate and the rate of citrate formation was increased by the addition of pyruvate. Small amounts of citrate were formed by lung mitochondrial preparations in the presence of 2-oxoglutarate and succinate only after the addition of pyruvate. The level of acetyl-CoA was significantly greater in the presence of pyruvate than in the presence of pyruvate plus malate. The addition of malate to lung mitochondrial preparations increased 14CO2 production from [U-14C]- and [1-14C] pyruvate but decreased its production from [2-14C]- and [3-14C]-pyruvate. However, malate increased the incorporation of [2-14C] pyruvate into malate and citrate. A low level of pyruvate-dependent H14CO8-incorporation into acid-stable products was observed, principally citrate and malate, but this rate did not exceed 5% of the rate of net citrate formation in the presence of malate and pyruvate. The capacity of rat lung mitochondria to form oxaloacetate from pyruvate alone in vitro is very limited, and would appear to cast doubt on a major role of pyruvate carboxylase in citrate formation. It is concluded that the rate of citrate formation from pyruvate is limited by the availability of intramitochondrial oxaloacetate and the rate of citrate efflux across the mitochondrial membrane.  相似文献   

4.
Baker's yeast transketolase is rapidly inactivated in the presence of carboxylic group modifiers, i.e., 1-ethyl-3(3'-dimethylaminopropyl)-carbodiimide or Woodward's reagent K. This inactivation is due to modification of the carboxylic group in the enzyme active center. The essential groups localized in the two active centers of transketolase differ in the rate of modification; accordingly, the inactivation kinetics appears as biphasic. A complete loss of the enzyme activity occurs as a result of modification of one carboxylic group per enzyme active center. The pKa value of modifiable groups is equal to about 6.5. This modification decreases by two orders of magnitude the affinity of the substrate for the active center. The carboxylic groups are not directly involved in the interaction with the substrates; their modification does not significantly affect the coenzyme binding. It is supposed that these groups are responsible for the deprotonation of the second carbon in the thiamine pyrophosphate thiazolium ring.  相似文献   

5.
U Grau  H Kapmeyer  W E Trommer 《Biochemistry》1978,17(22):4621-4626
Two diastereomeric nicotinamide adenine dinucleotide (NAD+) derivatives were synthesized in which the substrates of (S)-and (R)-lactate-specific dehydrogenases are covalently attached via a methylene spacer at position 5 of the nicotinamide ring. The corresponding nicotinamide derivatives were obtained stereospecifically by enzymatic reduction of 5-(2-oxalylethyl)nicotinamide. (3S)-5-(3-Carboxy-3-hydroxypropyl)-NAD+ undergoes and intramolecular hydride transfer in the presence of pig heart lactate dehydrogenase, forming the corresponding coenzyme-substrate analogue composed of pyruvate and NADH. No cross-reaction products resulting from an intermolecular reaction are observed. Two (R)-lactate specific dehydrogenases, however, do not catalyze a similar reaction in either one of the two diastereomers. A possible arrangement of the substrates in the active centers of these enzymes is proposed. 5-Methyl-NAD+ and 5-methyl-NADH are active coenzymes of pig heart lactate dehydrogenase in contrast to reports in the literature. (S)-Lactate binds to this enzyme in the absence of coenzyme, exhibiting a dissociation constant of 11 mM.  相似文献   

6.
The reactions of 4-chloronitrosobenzene with pyruvate decarboxylase and transketolase were investigated by use of a new high-pressure liquid chromatography method to determine any differences between these two enzymes with respect to hydroxamic acid production. In addition to the previously established difference in the type of hydroxamic acid produced by the two enzymes, several new and interesting differences in their reaction with nitrosoaromatics were discovered. Most notable was the finding that pyruvate decarboxylase gave 4-chlorophenylhydroxylamine as the major product from 4-chloronitrosobenzene, while transketolase did not produce any detectable hydroxylamine. A redox mechanism was proposed to account for arylhydroxylamine production by pyruvate decarboxylase. This redox mechanism can also explain hydroxamic acid production by pyruvate decarboxylase; however, a previously proposed nucleophilic reaction mechanism occurring simultaneously could not be totally disproven. Either of the two mechanisms is equally likely for transktolase action in view of the present evidence. Another major difference between these enzymes is that the rate of 4-chloronitrosobenzene conversion was found to be much faster for pyruvate decarboxylase than for transketolase when each enzyme was subjected to its own optimal reaction conditions. Transketolase displayed typical enzyme saturation kinetics with 4-chloronitrosobenzene with a Km of 0.31 mM and Vmax of 0.033 μmol ml?1 min?1 unit?1 relative to 5 mMd-fructose 6-phosphate as sugar substrate. On the other hand, the reaction with pyruvate decarboxylase was first order in 4-chloronitrosobenzene with a combined rate constant of 2.0 min?1 unit?1 ml.  相似文献   

7.
Glycerol stabilizes the activity of pyruvate, orthophosphate dikinase extracted from darkened or illuminated maize leaves. It serves as a better protectant of activity than dithiothreitol for the active day-form and the glycerol concentration needed for full protection is inversely related to the level of protein. The night-form of the enzyme is also protected by glycerol not only against inactivation, but also against partial reactivation in storage. Glycerol does not prevent the Pi-dependent activation nor the ADP-dependent inactivation of pyruvate, orthophosphate dikinase, but the rates of both processes are substantially decreased. The ability of the inactive night-form for Pi-dependent activation is also sustained by glycerol for at least 2 h at 20°C, apparently through stabilization of the labile regulatory protein.Abbreviations BSA bovine serum albumin - G-6-P glucose-6-phosphate - MDH malate dehydrogenase - PCMB p-chloromercuribenzoate - PEP phosphoenolpyruvate - PEPCase phosphoenol-pyruvate carboxylase - PPDK pyruvate, orthophosphate dikinase - PVP polyvinylpyrrolidone  相似文献   

8.
Haemophilus influenzae D(-)-lactate dehydrogenase (D(-)-lactate:NAD oxidoreductase; EC 1.1.1.28) was purified to electrophoretic homogeneity using salt fractionation, hydrophobic and dye affinity chromatography. The enzyme was purified 2100-fold with a 14% recovery and a final specific activity of 300 units/mg protein. The enzyme was demonstrated to be a tetramer of Mr 135,000. The enzyme catalyzed the reduction of pyruvate to give exclusively D(-)-lactate using NADH as coenzyme. The reaction catalyzed was essentially unidirectional, with the oxidation of D-lactate in the presence of NAD proceeding at less than 0.2% the rate of pyruvate reduction. Kinetic parameters for the reduction of pyruvate were determined for NADH and four structural analogs of the coenzyme. Coenzyme-competitive inhibition by adenosine derivatives indicated the presence of regions in the coenzyme binding site interacting with the adenosine and pyrophosphate moieties of the coenzyme. The purified enzyme was sensitive to oxidation and was effectively inactivated by sulfhydryl reagents. Conversion of D-lactate to pyruvate catalyzed by a membrane-bound D-lactate oxidase was demonstrated in cell-free extracts of H. influenzae.  相似文献   

9.
Summary Lactate dehydrogenase-X from testes of several rodent species was purified to homogeneity by an 8-(6-aminohexyl)-amino-AMP-Sepharose affinity column. In the case of mouse, the testicle extracts was first heated to 60° for fifteen minutes before the passage through the affinity column. A biospecific elution with reduced NAD+-pyruvate adduct resulted in a homogeneous preparation of lactate dehydrogenase-X. A similar procedure was also employed for the purification of lactate dehydrogenase-X from hamster, guinea pig and rat. After purification by affinity chromatography, lactate dehydrogenase-X was separated from residual somatic lactate dehydrogenase isozymes by DEAF-Sephadex chromatography. Adenosine, AMP, ADP, and ADP-ribose were shown to be coenzyme-competitive inhibitors of lactate dehydrogenase-X. The effectiveness of binding of these compounds increased with the size of the adenosine derivatives employed. Multiple inhibition analysis suggested that these compounds are interacting with the same region of coenzyme-binding site as shown by the mutual exclusion of one another from binding to the enzyme. The data suggest that the binding of coenzyme to the enzyme occurs through interactions involving the adenosine moiety and pyrophosphate grouping. Fluorescence spectroscopy was employed for the study of the mechanism of action of mouse lactate dehydrogenase-X. Both oxidized and reduced coenzymes induced significant quenching of protein fluorescence. Significant enhancements of NADH fluorescence and protein energy transfer were observed upon the addition of lactate dehydrogenase-X to the coenzyme solution. In the presence of lactate dehydrogenase-X and NAD+, the addition of pyruvate or -ketovalerate resulted in a time-dependent quenching of protein fluorescence and an increase in absorbance at 325 nm indicating the formation of a ternary complex. The results of this study suggest a similar molecular mechanism for different lactate dehydrogenase isozymes.To whom inquires should be addressed.NIH visiting fellowThis purification procedure is currently being adopted by Professor Erwin Goldberg at Northwestern University, Evanston, Ill. for large scale preparation of mouse LDH-X.  相似文献   

10.
Various bacteria which degrade pyruvate by the phosphoroclastic reaction were examined with respect to the role of coenzyme A (CoA) in this reaction. The strictly anaerobic bacteria, which cleave pyruvate by the phosphoroclastic reaction characteristic of Clostridia, required catalytic levels of CoA for the CO(2)-pyruvate exchange and acetoin-forming portions of the phosphoroclastic reaction. These reactions were reversibly inhibited by the CoA analogue, desulfo-CoA. In contrast, using cell-free extracts of bacteria which degrade pyruvate by the coliform phosphoroclastic reaction (pyruvate formate-lyase), no requirement for CoA could be observed for the formate-pyruvate exchange reaction. It is suggested that CoA serves a regulatory function in the early portion of the clostridal type of phosphoroclastic reaction.  相似文献   

11.
Recombinant human (His)6-transketolase (hTK) was obtained in preparative amounts by heterologous expression of the gene encoding human transketolase in Escherichia coli cells. The enzyme, isolated in the form of a holoenzyme, was homogeneous by SDS-PAGE; a method for obtaining the apoenzyme was also developed. The amount of active transketolase in the isolated protein preparation was correlated with the content of thiamine diphosphate (ThDP) determined in the same preparation. Induced optical activity, facilitating studies of ThDP binding by the apoenzyme and measurement of the transketolase reaction at each stage, was detected by circular dichroism spectroscopy. A single-substrate reaction was characterized, catalyzed by hTK in the presence of the donor substrate and in the absence of the acceptor substrate. The values of the Michaelis constant were determined for ThDP and a pair of physiological substrates of the enzyme (xylulose 5-phosphate and ribose 5-phosphate).  相似文献   

12.
Chiral amino alcohols are structural motifs present in sphingolipids, antibiotics, and antiviral glycosidase inhibitors. Their chemical synthesis presents several challenges in establishing at least two chiral centres. Here a de novo metabolic pathway using a transketolase enzyme coupled with a transaminase enzyme has been assembled. To synthesise this motif one of the strategies to obtain high conversions from the transaminase/transketolase cascade is the use of hydroxypyruvate (HPA) as a two-carbon donor for the transketolase reaction; although commercially available it is relatively expensive limiting application of the pathway on an industrial scale. Alternately, HPA can be synthesised but this introduces a further synthetic step. In this study two different biocatalytic strategies were developed for the synthesis of (2S,3R)-2-amino-1,3,4-butanetriol (ABT) without adding HPA into the reaction. Firstly, a sequential cascade of three enzymatic steps (two transaminases and one transketolase) for the synthesis of ABT from serine, pyruvate and glycolaldehyde as substrates. Secondly, a two-step recycling cascade where serine is used as donor to aminate erythrulose (catalysed by a transketolase) for the simultaneous synthesis of ABT and HPA. In order to test the novel pathways, three new transaminases are described, two ω-transaminases able to accept a broad range of amine acceptors with serine as amine donor; and an α-transaminase, which showed high affinity towards serine (KM: 18 mM) using pyruvate as amine acceptor. After implementation of the above enzymes in the biocatalytic pathways proposed in this paper, the two-step recycling pathway was found to be the most promising for its integration with E. coli metabolism. It was more efficient (10-fold higher conversion), more sustainable and cost-effective (use of low cost natural substrates and only two enzymes), and the reaction could be performed in a one-pot system.  相似文献   

13.
R K Gupta  R M Oesterling 《Biochemistry》1976,15(13):2881-2887
Rabbit muscle pyruvate kinase requires two divalent cations per active site for catalysis of the enolization of pyruvate in the presence of adenosine 5'-triphosphate (ATP). One divalent cation is bound directly to the enzyme and forms a second sphere complex with the bound ATP (site 1). The second divalent cation is directly coordinated to the phosphoryl groups of ATP and does not interact with the enzyme (site 2). The essential role of the divalent cation at site 1 is shown by the requirement for Mg2+ or Mn2+ for the enolization of pyruvate in the presence of the substitution inert Cr3+-ATP complex. The rate of detritiation of pyruvate shows a hyperbolic dependence of Mn2+ concentration in the presence of high concentrations of enzyme and Cr3+-ATP. A dissociation constant for Mn2+ from the pyruvate kinase-Mn2+-ATP-Cr3+-pyruvate complex of 1.3 +/- 0.5 muM is determined by the kinetics of detritiation of pyruvate and by parallel Mn2+ binding studies using electron paramagnetic resonance. The essential role of the divalent cation at site 2 is shown by the sigmoidal dependence of the rate of detritiation of pyruvate on Mn2+ concentration in the presence of high concentrations of enzyme and ATP yielding a dissociation constant of 29 +/- 9 muM for Mn2+ from site 2. This value is similar to the dissociation constant of the binary Mn-ATP complex (14 +/- 6 muM) determined under similar conditions. The rate of detritiation of pyruvate is proportional to the concentration of the pyruvate kinase-Mn2+-ATP-Mn2+-pyruvate complex, as determined by parellel kinetic and binding studies. Variation of the nature of the divalent cation at site 1 in the presence of CrATP causes only a twofold change in the rate of detritiation of pyruvate which does not correlate with the pKa of the metal-bound water. Variation of the nature of the divalent cation at both sites in the presence of ATP causes a sevenfold variation in the rate of detritiation or pyruvate that correlates with the pKa of the metal-bound water. The greater rate of enolization observed with CrATP fits this correlation, indicating that the electrophilicity of the nucleotide bound metal (at site 2) determines the rate of enolization of pyruvate.  相似文献   

14.
The dependence of the catalytic properties of lactate dehydrogenase (LDH, EC 1.1.1.27) from a halophilic alga Dunaliella salina, a glycophilic alga Chlamydomonas reinhardtii, and from porcine muscle on glycerol concentration, medium pH, and temperature was investigated. Several chemical properties of the enzyme from D. salina differentiated it from the LDH preparation obtained from C. reinhardtii and any homologous enzymes of plant, animal, and bacterial origin. (1) V max of pyruvate reduction manifested low sensitivity to the major intracellular osmolyte, glycerol. (2) The affinity of LDH for its coenzyme NADH dropped in the physiological pH region of 6–8. Above pH 8, NADH virtually did not bind to LDH, while the enzyme affinity for pyruvate did not change considerably. (3) The enzyme thermostability was extremely low: LDH was completely inactivated at room temperature within 30 min. The optimum temperature for pyruvate reduction (32°C) was considerably lower than with the enzyme preparations from C. reinhardtii (52°C) and porcine muscle (61°C). (4) NADH greatly stabilized LDH: the ratio of LDH inactivation constants in the absence of the coenzyme and after NADH addition at the optimum temperature in the preparation from D. salina exceeded the corresponding indices of LDH preparations from C. reinhardtii twelve times and from porcine muscle eight times. The authors believe that these LDH properties match the specific metabolism of D. salina which is set at rapid glycerol synthesis under hyperosmotic stress conditions. The increase of cytoplasmic pH value produced in D. salina by the hyperosmotic shock can switch off the terminal reaction of the glycolytic pathway and thus provide for the most efficient utilization of NADH in the cycle of glycerol synthesis. As LDH is destabilized in the absence of NADH, this reaction is also switched off. In the course of alga adaptation to the hyperosmotic shock, glycerol accumulation and the neutralization of intracellular pH stabilize LDH, thus creating the conditions for restoring the complete glycolytic cycle.  相似文献   

15.
  • 1.1. Indian River male broiler chickens growing from 7 to 28 days of age were fed diets containing 12, 18, 24 and 30% protein + 0 or 1 mg triiodothyronine (T3)/kg of diet to study energetic costs of lipogenesis and the use of various substrates for in vitro lipogenesis.
  • 2.2. De novo lipid and CO2 production were determined in the presence of [1-14C]pyruvate, [2-14q]pyruvate, [3-14C]pyruvate, [2-14C]acetate and [U-14C]alanine.
  • 3.3. Oxygen consumption was determined in mitochondrial preparations to estimate the energetic costs in expiants synthesizing lipid.
  • 4.4. Radiolabeled CO2 derived from [1-14C]pyruvate was used as an estimate of coenzyme A availability in liver expiants. Lipids derived from [2-14C]pyruvate, [2-14C]acetate and [U-14C]alanine estimate relative substrate efficiency.
  • 5.5. Labeled CO2 production from [1-14C]pyruvate was greatest in that group fed a 12% protein diet and least in the group fed a 30% protein diet.
  • 6.6. In addition, T3 increased CO2 production from [1-14C]pyruvate.
  • 7.7. The production of 14CO2 from the second carbon of pyruvate or acetate was increased by T3.
  • 8.8. The low-protein diet (12% protein) increased (P <0.05) lipogenesis.
  • 9.9. Adding T3 to the diets decreased carbon flux into lipid from all substrates, but increased CO2 production from all substrates without changing stage 3 and 4 respiration rates in mitochondrial preparations.
  • 10.10. These observations imply that coenzyme A availability may have regulated de novo lipogenesis in the present study.
  • 11.11. It was also concluded that previously noted effects of T3 on intermediary metabolism may involve metabolic pathways that do not involve changes in mitochondrial function.
  相似文献   

16.
The catabolism of propane by “Nocardia paraffinicum” (Rhodococcus rhodochrous) has been shown to involve CO2 fixation after its oxidation to propionic acid. “N. paraffinicum” failed to grow on either propane or 1-propanol in the absence of CO2. The rate of propane utilization was directly related to the initial CO2 concentration, and Warburg respirometry suggested that CO2 was required for the catabolism of 1-propanol, propionaldehyde, and propionate but not for 2-propanol. These data also suggested that the predominant pathway for the utilization of propane by “N. paraffinicum” was through 1-propanol. The use of [2-14C]propane and 14CO2 confirmed the catabolism of propane and the fixation of CO2. Through the use of these isotopes and the pyruvate carboxylase inhibitor sodium arsenite, the labeled 2,4-dinitrophenylhydrazine derivative of pyruvate was trapped and isolated via thin-layer chromatography. The trapping of [14C]pyruvate in this manner was considered to be indicative of the presence of the methylmalonyl coenzyme A pathway for CO2 fixation.  相似文献   

17.
Data from site-directed mutagenesis and X-ray crystallography show that His103 of holotransketolase (holoTK) does not come into contact with thiamin diphosphate (ThDP) but stabilizes the transketolase (TK) reaction intermediate, alpha,beta-dihydroxyethyl-thiamin diphosphate, by forming a hydrogen bond with the oxygen of its beta-hydroxyethyl group [Eur. J. Biochem. 233 (1995) 750; Proc. Natl. Acad. Sci. USA 99 (2002) 591]. We studied the influence of His103 mutation on ThDP-binding and enzymatic activity. It was found that mutation does not affect the affinity of the coenzyme to apotransketolase (apoTK) in the presence of Ca(2+) (a cation found in the native holoenzyme) but changes all the kinetic parameters of the ThDP-apoTK interaction in the presence of Mg(2+) (a cation commonly used in ThDP-dependent enzymes studies). It was concluded that the structures of TK active centers formed in the presence of Mg(2+) and Ca(2+) are not identical. Mutation of His103 led to a significant acceleration of the one-substrate reaction but a slow down of the two-substrate reaction so that the rates of both types of catalysis became equal. Our results provide evidence for the intermediate-stabilizing function of His103.  相似文献   

18.
The regulatory consequences of acetate infusion on the pyruvate and the branched chain α-keto acid dehydrogenase reactions in the isolated, perfused rat liver were investigated. Metabolic flux through these two decarboxylation reactions was monitored by measuring the rate of 14CO2 production from infused 1-14C-labeled substrates. When acetate was presented to the liver as the sole substrate the rate of ketogenesis which resulted was maximal at concentrations of acetate in excess of 10 mm. The increase in hepatic ketogenesis during acetate infusion was not accompanied by an alteration of the mitochondrial oxidation-reduction state as measured by the ratio of β-hydroxybutyrate/ acetoacetate in the effluent perfusate. While acetate infusion did not affect the rate of α-keto[1-14C]isocaproate decarboxylation, the rate of α-keto[1-14C]isovalerate decarboxylation was stimulated appreciably upon acetate addition. No change was observed in the amount of extractable branched chain α-keto acid dehydrogenase during acetate infusion. The rate of [1-14C]pyruvate decarboxylation was stimulated in the presence of acetate at low (<1 mm) but not at high (>1 mm) perfusate pyruvate concentrations. The stimulation of the metabolic flux through the pyruvate dehydrogenase reaction upon acetate infusion was accompanied by an increase in the activation state of the pyruvate dehydrogenase complex from 25.7 to 35.6% in the active form. In a liver perfused in the presence of the pyruvate dehydrogenase kinase inhibitor, dichloroacetate, at a low concentration of pyruvate (0.05 mm) the infusion of acetate did not affect the rate of pyruvate decarboxylation. As the rate of mitochondrial acetoacetate efflux is increased during acetate infusion the stimulation of pyruvate and α-ketoisovalerate decarboxylation is attributed to an accelerated rate of exchange of mitochondrial acetoacetate for cytosolic pyruvate or α-ketoisovalerate on the monocarboxylate transporter.  相似文献   

19.
At least two types of cytokinin-binding sites are present in a particulate fraction of tobacco (Nicotiana tabacum L.) cells that sediments at 80,000 x g. The major binding component has a low affinity towards cytokinins, is resistant to heating at 100°C, and is not specific for biologically active cytokinin analogues. The second site occurs in much lower frequency, is heat labile, shows high affinity towards cytokinins, and is specific for biologically active analogs of the hormone. The testing for binding specificity was mainly performed with a series of halogenated benzyladenine derivatives having a wide range of biological activities. The low-affinity binding site shows some of the same features as talcum powder, a non-biological material which binds cytokinins in a non-specific fashion. The properties of the high-affinity binding site are consistent with the expected characteristics of a cytokinin receptor. However, the role of the observed high-affinity binding site with regard to the biological action of cytokinins is not yet known.Abbreviations BA N 6-benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - Kd equilibrium dissociation constant - Rt total concentration of binding sites In partial fulfillment of the requirements for the Ph.D. degree in the Department of Botany and Plant Pathology, Michigan State University  相似文献   

20.
Abstract: The effect of 3-hydroxybutyrate on pyruvate decarboxylation by neonatal rat brain mitochondria and synaptosomes was investigated. The rate of [1 -14C]pyruvate decarboxylation (1 mm final concentration) by brain synaptosomes derived from 8-day-old rats was inhibited by 10% in the presence of 2 mm -d ,l -3-hydroxybutyrate and by more than 20% in the presence of 20 mm -d ,l -3-hydroxybutyrate. The presence of 2 mm -l ,d -3-hydroxybutyrate did not affect the rate of [1-14T]pyruvate decarboxylation (1 mm final concentration) by brain mitochondria; however, at a concentration of 20 mm -d ,l -3-hydroxybutyrate, a marked inhibition was seen in preparations from both 8-day-old (35% inhibition) and 21-day-old (24% inhibition) but not in those from adult rats. Although the presence of 100 mm -K+ in the incubation medium stimulated the rate of pyruvate decarboxylation by approximately 50% compared with the rate in the presence of 1 mm -K+, the presence of 20 mm -d ,l -3-hydroxybutyrate still caused a marked inhibition in both media (1 and 100 mm -K+). The presence of 20 mm -d ,l -3-hydroxybutyrate during the incubation caused an approximately 20% decrease in the level of the active form of the pyruvate dehydrogenase complex in brain mitochondria from 8-day-old rats. The concentrations of ATP, ADP, NAD+, NADH, acetyl CoA, and CoA were measured in brain mitochondria from 8-day-old rats incubated in the presence of 1 mm -pyruvate alone or 1 mm -pyruvate plus 20 mm -d ,l -3-hydroxybutyrate. Neither the ATP/ADP nor the NADH/NAD+ ratio showed significant changes. The acetyl CoA/CoA ratio was significantly increased by more than twofold in the presence of 3-hydroxybutyrate. The possible mechanisms and physiological significance of 3-hydroxybutyrate inhibition of pyruvate decarboxylation in neonatal rat brain mitochondria are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号