首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.  相似文献   

2.
Summary Insect femoral chordotonal organs are internal proprioceptors which monitor the position and movements of the femur-tibia joint of the leg. The locust (Locusta migratoria) metathoracic femoral chordotonal organ is composed of approximately 100 neurones with a variety of response properties. In this study intracellular recordings were used to examine the range fractionation of phasic and tonic responses to tibial movements. Some neurones responded across the full range of leg angles, while others had restricted response ranges, and could therefore act as labeled lines. Neurones with maximal firing at mid-angles are described for the first time in a locust femoral chordotonal organ. Responses are discussed in terms of underlying structural constraints on signal transduction.Abbreviation (mt) FCO (metathoracic) femoral chordotonal organ  相似文献   

3.
Elongation of the femoral chordotonal organ (signalling a flexion movement of the femur-tibia joint) in stick insects being active releases the active reaction (AR) in the extensor and flexor motor neurones. The AR was released in hindlegs in a situation where free animals would preferentially walk backwards. In most cases the coordination between extensor-flexor and the retractor unguis muscle was like in a stance phase of backward walking. In a situation where free animals would preferentially walk forwards, the percentage of ARs was smaller, and resistance reflexes became more frequent. When campaniform sensilla of the hind leg were destroyed coordinations like in a swing phase of forward walking became more frequent. — Additional stimuli during searching movements in an artificially closed femur-tibia feedback system (Weiland et al. 1986) showed that the AR is expressed also under these conditions and controls velocity and endpoint of a flexion movement. All results support the idea that the neural system producing the AR is a functional element of the pattern generator for forward walking, of the one for backward walking and of the one for searching movements. As far as this system is concerned the three pattern generators only differ in the kind of coordinating pathways between constant functional elements.  相似文献   

4.
The known nonlinearities of the femur-tibia control loop of the stick insect Carausius morosus (enabling the system to produce catalepsy) are already present in the nonspiking interneuron E4: (1) The decay of depolarizations in interneuron E4 following slow elongation movements of the femoral chordotonal organ apodeme could be described by a single exponential function, whereas the decay following faster movements had to be characterized by a double exponential function. (2) Each of the two corresponding time constants was independent of stimulus velocity. (3) The relative contribution of each function to the total amount of depolarization changed with stimulus velocity. (4) The characteristics described in (1)–(3) were also found in the slow extensor tibiae motoneuron. (5) Single electrode voltage clamp studies on interneuron E4 indicated that no voltage dependent membrane properties were involved in the generation of the observed time course of decay. Thus, we can trace back a certain behavior (catalepsy) to the properties of an identified, nonspiking interneuron.Abbrevations FETi fast extensor tibiae motor neuron - FT-joint femur-tibia joint - FT-control loop femur-tibia control loop - SETi slow extensor tibiae motor neuron - R regression coefficient  相似文献   

5.
In the artificially closed femur-tibia control system of stick insects oscillations were induced in 3 different ways: Increasing the phase-shift by introducing an electronic delay, afference sign reversal and coupling the tibia to an inert mass. In all 3 cases the oscillations stopped after some time. The gain of the open-loop system was significantly smaller after the oscillations. Afference sign reversal by surgically crossing of the receptor apodeme of the femoral chordotonal organ for 25–85 days does not lead to altered characteristics of the control loop. When sinusoidal passive movements are forced upon the intact femur-tibia joint the forces resisting these movements do not decrease with time. In contrast to direct stimulation of the femoral chordotonal organ, these passive movements also influence the contralateral leg. The experiments show that the gain-control system of the femur-tibia control loop of stick insects consists of at least two components: A sensitization system (with inputs from many kinds of stimuli indicating some kind of disturbance) increases the gain of all reflex loops. A specific habituation-like system decreases the gain with repetitive stimulation only of one control system.Abbreviations fCO femoral chordotonal organ - SETi slow extensor tibiae motor neuron  相似文献   

6.
The femur-tibia (FT) joint of insects is governed by a neuronal network that controls activity in tibial motoneurons by processing sensory information about tibial position and movement provided by afferents of the femoral chordotonal organ (fCO). We show that central arborizations of fCO afferents receive presynaptic depolarizing synaptic inputs. With an average resting potential of −71.9 ± 3.72 mV (n = 10), the reversal potential of these potentials is on average −62.8 ± 2.3 mV (n = 5). These synaptic potentials occur either spontaneously or are related to movements at the fCO. They are thus induced by signals from other fCO afferents. Therefore, the synaptic inputs to fCO afferents are specific and depend on the sensitivity of the individual afferent affected. These potentials reduce the amplitude of concurrent afferent action potentials. Bath application of picrotoxin, a noncompetitive blocker of chloride ion channels, blocks these potentials, which indicates that they are mediated by chloride ions. From these results, it is concluded that these are inhibitory synaptic potentials generated in the central terminals of fCO afferents. Pharmacologic removal of these potentials affects the tuning of the complete FT control system. Following removal, the dependence of the FT control loop on the tibia position increases relative to the dependency on the velocity of tibia movements. This is due to changes in the relative weighting of the position and velocity signals in the parallel interneuronal pathways from the fCO onto tibial motoneurons. Consequently, the FT joint is no longer able to perform twig mimesis (i.e., catalepsy), which is known to rely on a low position compared to the high-velocity dependency of the FT control system. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 359–376, 1997.  相似文献   

7.
Catalepsy in the femur-tibia joint can be characterized as follows: When the joint is passively bent and then released, the joint first extends rapidly by 10°–30° and then returns to its starting position with extremely low speed.Catalepsy is a characteristic of the femur-tibia control system. This system is quantitatively described in the open-loop configuration (input: stimulation of the femoral chordotonal organ; output: movement of the tibia). The output shows a predominant dynamic portion which only responds to movement and a weak static portion which responds to position. The dynamic portion can be described by a high-pass and a low-pass filter in series. The time constant of the high-pass filter in series. The time constant of the high-pass filter depends on input slope. The system possesses a large phase reserve and is therefore very stable in the closed loop configuration.The results confirm the hypothesis that the high gain of the phasmid control system evolved only under a selection pressure towards catalepsy.Supported by DFG Ba 578  相似文献   

8.
Stick insects walking along inclined surfaces   总被引:3,自引:0,他引:3  
In the experiments stick insects walk on an inclined substratesuch that the legs of one side of the body point uphill andthe legs of the other side point downhill. In this situationthe vertical axis of the body is rotated against the inclinationof the substrate as if to compensate for the effect of substrateinclination. A very small effect has been found when the experimentwas performed with animals standing on a tilted platform whichshows that the effect depends on the behavioral context. When,however, animals first walked along the inclined surface andthen, before measurement, stopped walking spontaneously, a rotationof the body has been observed similar to that in walking animals.In a second experiment it was tested whether the observed bodyrotation is caused by the change of direction of gravity vectoror by the fact that on an inclined surface gravity necessarilyhas a component pulling the body sideways. Experiments withanimals standing on horizontal ground and additional weightsapplied pulling the body to the side showed similar body rotationssupporting the latter idea. In a simulation study it could beshown that the combined activity of proportional feedback controllersin the leg joints is sufficient to explain the observed behavior.This is however only possible if the gain factors of coxa-trochanterjoint controller and of femur-tibia joint controller show aratio in the order of 1 : 0.05 to 1 : 1.8. In order to describethe behavior of animals standing on a tilted platform, a ratioof 1 : 1.7 is necessary. In walking animals, this body rotationrequires to change the trajectories of stance and swing movements.The latter have been studied in more detail. During swing, thefemur-tibia joint is more extended in the uphill legs. Conversely,the coxa-trochanter joint appears to be more elevated in thedownhill legs which compensates the smaller lift in the femur-tibiajoint. The results are discussed in the context of differenthypotheses.  相似文献   

9.
The locomotory system of Solifugae is distinct from that of other Arachnida in several ways. Only three pairs of legs are involved in locomotion, while the first pair function as sensory appendages. Morphologically, the proximal region of the locomotory system in Solifugae is characterized by fused coxae. Within the prosoma of Solifugae, an endosternite is missing: in other Arachnida, this endosternite serves as the proximal attachment site for a portion of the extrinsic musculature. How then do these skeletal modifications influence the muscular anatomy in the proximal region of the locomotory system? To answer this question, we studied the skeletomuscular anatomy of Galeodes granti at the interface between the prosoma and legs, reinvestigating the complex muscular anatomy of this body region for the first time in over 80 years and—for the first time—using detailed micro-computed tomography scans to analyze the skeletomuscular morphology. Specimens of three further species were checked for comparison. The analysis revealed differences in the number and composition of coxa-trochanter muscles in each of the four pairs of legs. These are compared in the light of serial homology. The comparison between the proximal locomotory system of Solifugae and that of other Arachnida unveils a series of analogies. Primarily, the coxa-trochanter joint is the most proximal joint to move the leg relative to the prosoma. Therefore, we argue that from a morpho-functional point of view, the coxa-trochanter muscles in Solifugae should be considered secondary extrinsic musculature. Thus, the legs gain a stable, articulated joint in the most proximal region of the leg to the prosoma, which might be advantageous for agile locomotion.  相似文献   

10.
We studied the common kinematic features of the coxa and trochanter in cursorial and raptorial legs, which are the short size of the podomers, predominantly monoaxial joints, and the approximate orthogonality of adjacent joint axes. The chain coxa-trochanter with its short elements and serial orthogonality of joint axes resembles the gimbals which combine versatility and tolerance to external perturbations. The geometry of legs was studied in 23 insect species of 12 orders. Insects with monoaxial joints were selected. The joint between the trochanter and the femur (TFJ) is defined either by two vestigial condyles or by a straight anterior hinge. Direction of the joint axes in the two basal podomers was assessed by 3D measurements or by goniometry in two planes. Length of the coxa is <15% (mostly <8%) of the total length of the cursorial leg, that of the trochanter <10%. Angles between the proximal and distal joint axes in the middle coxa range from 124 to 84 degrees (mean 97+/-14 degrees ), in the trochanter (in all legs studied) from 125 to 72 degrees (mean 90+/-13 degrees ). Vectors of the distal axis in the coxa are concentrated about the normal to the plane defined by the proximal axis and the midpoint between the distal condyles. These vectors in the trochanter lie at various angles to the normal; angles are correlated with the direction of the TFJ relative to the femur. Range of reduction about the TFJ is over 60 degrees in the foreleg of Ranatra linearis, Mantispa lobata and the hind leg in Carabus coriaceus (confirming observations of previous authors), 40-60 degrees in the foreleg of Vespa crabro and in the middle one in Ammophila campestris, 10-30 degrees in other studied specimens. The special role of the trochanter in autotomy and in active propulsion in some insect groups is discussed. The majority of insects possess small trochanters and slightly movable TFJs with the joint axis laying in the femur-tibia plane. We pose the hypothesis that the TFJ damps external forces, the vectors of which lie off the femur-tibia plane, the reductor muscle acting as a spring. Thus the TFJ contributes to dynamic stability of legged locomotion.  相似文献   

11.
The angle of the coxa-trochanter (C-T) joint in the stick insect Carausius morosus is controlled by a negative feedback mechanism. It is shown that the trochanteral hair plate alone functions as the feedback transducer and that the rhomboid hair plate is not involved in the feedback loop.The properties of the C-T control system were investigated by means of force measurements. The results cannot be adequately described in all details by either a fractional differentiator model, a model which fits many sensory systems, or a nonlinear bandpass filter, a model which fits the force response of the femur-tibia feedback loop. The fractional differentiator model adequately describes the frequency response of the open-loop system to sinusoidal stimulation with 34 deg stimulus amplitude. However, the responses to sinusoidal and steplike stimulation with 10 deg stimulus amplitude do not fit this model. They are better described by the model of a nonlinear bandpass filter.The possible contribution of mechanical properties of the musculature and the joint to the total force response is discussed. It is suggested that cocontractions occurring at higher stimulus frequencies alters the muscle properties and enables the animal to respond to stimulus frequencies above the upper corner frequency of the active feedback loop.  相似文献   

12.
Coordination of motor output between leg joints is crucial for the generation of posture and active movements in multijointed appendages of legged organisms. We investigated in the stick insect the information flow between the middle leg femoral chordotonal organ (fCO), which measures position and movement in the femur-tibia (FT) joint and the motoneuron pools supplying the next proximal leg joint, the coxa-trochanteral (CT) joint. In the inactive animal, elongation of the fCO (by flexing the FT joint) induced a depolarization in eight of nine levator trochanteris motoneurons, with a suprathreshold activation of one to three motoneurons. Motoneurons of the depressor trochanteris muscle were inhibited by fCO elongation. Relaxation signals, i.e., extension of the FT joint, activated both levator and depressor motoneurons; i.e., both antagonistic muscles were coactivated. Monosynaptic as well as polysynaptic pathways contribute to interjoint reflex actions in the stick insect leg. fCO afferents were found to induce short latency EPSPs in levator motoneurons, providing evidence for direct connections between fCO afferents and levator motoneurons. In addition, neuronal pathways via intercalated interneurons were identified that transmit sensory information from the fCO onto levator and/or depressor motoneurons. Finally, we describe two kinds of alterations in interjoint reflex action: (a) With repetitive sensory stimulation, this interjoint reflex action shows a habituation-like decrease in strength. (b) In the actively moving animal, interjoint reflex action in response to fCO elongation, mimicking joint flexion, qualitatively remained the same sign, but with a marked increase in strength, indicating an increased influence of sensory signals from the FT joint onto the adjacent CT joint in the active animal. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 891–913, 1997  相似文献   

13.
The femoral chordotonal organ of stick insects senses position and velocity of movements in the femur-tibia joint, as well as tibial vibration. While sensory information about large-scale tibial movements is processed by a well-known neuronal network and elicits resistance reflexes in extensor and flexor tibiae motoneurons, it is not yet known how sensory information about vibration of the tibia is processed. We investigated the transmission of vibration stimuli to tibial extensor motoneurons and their premotor interneurons. Vibration stimuli applied to the femoral chordotonal organ evoked responses in tibial extensor and flexor muscles. During ongoing vibration this response adapted rapidly. This adaptation had no effect on the motoneuronal response to large-scale tibial movements. Recording from premotor interneurons revealed that vibratory signals were processed in part by the same interneuronal pathways as (large-scale) velocity and position information. While only certain parts of the interneuronal reflex pathways showed little or no response during vibration stimuli, most neurons responded to both position or velocity stimuli and vibration at the femoral chordotonal organ. We conclude that sensory information about vibration of the tibia shares part of the interneuronal pathways that transmit sensory information about large-scale tibial movements to the motoneurons. Accepted: 25 April 1999  相似文献   

14.
In inactive stick insects, sensory information from the femoral chordotonal organ (fCO) about position and movement of the femur-tibia joint is transferred via local nonspiking interneurons onto extensor and flexor tibiae motoneurons. Information is processed by the interaction of antagonistic parallel pathways at two levels: (1) at the input side of the nonspiking interneurons and (2) at the input side of the motoneurons. We tested by a combination of physiological experiments and computer simulation whether the known network topology and the properties of its elements are sufficient to explain the generation of the motor output in response to passive joint movements, that is resistance reflexes. In reinvestigating the quantitative characteristics of interneuronal pathways we identified 10 distinct types of nonspiking interneurons. Synaptic inputs from fCO afferents onto these interneurons are direct excitatory and indirect inhibitory. These connections were investigated with respect to position and velocity signals from the fCO. The results were introduced in the network simulation. The motor output of the simulation has the same characteristics as the real system, even when particular types of interneurons were removed in the simulation and the real system.  相似文献   

15.
Considerable information is now available on the neural organization of the escape system of the American cockroach. To relate these data to the behavior, we need detailed information on the movements made at the principle leg joints that produce the turn. We used motion analysis of high speed video records to acquire such information. Records from both free ranging and tethered animals were analyzed. 1. We analyzed individual joint movements using a tethered preparation. Stimuli from 4 different angles around the animal were used. For all wind angles, the femur-tibia (FT) joint on the mesothoracic leg that is ipsilateral to the wind source extended while the contralateral mesothoracic FT joint flexed. This moved both of these legs laterally toward the wind source. In freely moving animals the FT movements provide forces that turn the animal away from the wind source. 2. The ipsilateral mesothoracic coxa-femur (CF) joint extended for all wind angles. The contralateral mesothoracic CF joint extended in response to most winds from the rear, but switched to flexion in response to wind from the side and front. As a result of these joint movements, rear wind resulted in rearward movements of the contralateral mesothoracic leg, while side and front wind resulted in more forward movements of that leg. 3. The CF and FT joints for both ipsilateral and contralateral metathoracic legs extended to wind from the rear and switched to flexion as the wind was placed at more anterior positions around the animal. In freely moving animals, extension of these joints would push the animal forward. Flexion would pull the animal backward. 4. Several of the joints showed correlations between rate of movement and initial joint angle. That is, joints that were already flexed at the onset of stimulation tended to move at a faster rate to a final position than joints that started at a more extended position. 5. Metathoracic FT and CF joints showed a high degree of positive correlation during the escape movements. Indeed, many curves showing movement of metathoracic FT and CF joints with time were virtually identical.  相似文献   

16.
This paper concentrates on the system that controls the femur-tibia joint in the legs of the stick insect, Carausius morosus. Earlier investigations have shown that this joint is subject to a mixture of proportional and differential control whereby the differential part plays a prominent role. Experiments presented here suggest another interpretation: single legs of a stick insect were systematically perturbed using devices of different compliance and compensatory forces and movements monitored. When the compliance is high (soft spring), forces are generated that return the leg close to its original position. When the compliance is low (stiff spring), larger forces are generated but sustained changes in position occur that are proportional to the force that is applied. Selective ablation of leg sense organs showed that the leg did not maintain its position after elimination of afferents of the femoral chordotonal organ. Ablation of leg campaniform sensilla had no effect. These data support the idea that different control strategies are used, depending upon substrate compliance. In particular, what we and other authors have called a differential controller, is now considered as an integral controller that intelligently gives up when the correlation between motor output and movement of the leg is low.We would like to dedicate this article to Prof. Dr. Ulrich Bässler. Starting in the 1960s, his seminal work stimulated a long series of fruitful studies that, even today, reveal exciting insights into motor control.  相似文献   

17.
Depending on the activity status of the animal, the control system of the femur-tibia joint in stick insects exhibits either a resistance reflex, or the active reaction, a totally different action pattern (Bässler 1988a). Using analog electronic neuron models, several different neuronal circuits are explored that model the active reaction with all its features. The models differ in complexity, redundance and the robustness against small variations of network parameters (e.g. coupling strengths). The circuit with the highest robustness and redundancy requires interneurons with special features, such as found in real animals. When inserted into a closed loop modeling movement and sensory feedback from the periphery, this circuit produces oscillations similar to searching movements found in the real animal. In addition to intracellular recording methods, the authors propose modeling with realistic neuromimes as a complementary method in the investigation of neuronal networks which have well documented input-output relationships.  相似文献   

18.
Summary Insect legs possess chordotonal organs which monitor leg angle, and the direction, velocity and acceleration of leg movements. The locust metathoracic femoral chordotonal organ (mtFCO) has previously been studied morphologically and physiologically, but no detailed analysis of the responses of individual neurones, and their location in the organ has so far been produced. By recording from, and staining mtFCO neurones I have been able to compile for the first time such a map. The distribution of neurone somata in the locust mtFCO is more complex than previously thought: receptors sensitive to both stretch and relaxation of the apodeme are distributed throughout the organ. Seventeen response types were encountered. Neurones with a particular response type have somata in comparable locations within the mtFCO. Comparisons are made between the response types found in the stick insect and those in the locust. The possible functions of some of the responses are discussed.Abbreviation (mt)FCO (metathoracic) femoral chordotonal organ - F-T femur-tibia  相似文献   

19.
We studied functional recovery of leg posture and walking behaviour in the femur-tibia joint control system of stick insects. Leg extensions in resting animals and during walking are produced by different parts of a single extensor muscle. (a) Ablation of the muscle part responsible for fast movements prevented leg extension during the swing phase. Resting posture remained unaffected. Within a few post-operative days, extension movements recovered, provided that sensory feedback was available. Extension movements were now driven by the muscle part which in intact animals controls the resting posture only. (b) Selective ablation of this (slow) muscle part affected the resting posture, while walking was unaffected. The resting posture partly recovered during subsequent days. To test the range of functional recovery and underlying mechanisms, we additionally transected muscle motor innervation, or we inverted or ablated sensory feedback. We found that recovery was based on both muscular and neuronal mechanisms. The latter required appropriate sensory feedback for the process of recovery, but not for the maintenance of the recovered state. Our results thus indicate the existence of a sensory template that guides recovery. Recovery was limited to a behavioural range that occurs naturally in intact animals, though in different behavioural contexts.  相似文献   

20.
The cineradiographic study of the locomotion of the rock hyrax (Procavia capensis) and the functional interpretation of its locomotory system, reveals that the main action of proximal segments is combined with flexed position and low movements of limb joints. This observation can be applied to the locomotion of other small mammals. In the forelimb, scapular rotation and translation account for more than 60% of step length. Effective shoulder joint movements are mostly restricted to less than 20°, and elbow movements range mainly between 20°-50°. The detachment of the shoulder girdle of therian mammals from the axial skeleton, and development of a supraspinous fossa, are correlated with movements at a high scapular fulcrum. Movements at such a high fulcrum are in interdependency with a crouched posture. Only flexed limbs can act as shock absorbers and prevent vertical changes in the center of gravity. Basic differences in forelimb movements exist between larger primates (humeral retraction) and smaller mammals (scapula retraction). In the hyrax, propulsion is due mainly to hip joint movements in symmetrical gaits, but sagittal lumbar spine movements play the dominant role at in-phase gaits. Joint and muscular anatomy, especially of the shoulder region, are discussed in view of the kinematic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号