首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormone receptors, isolated from rat liver nuclei, bind to purified DNA. By contrast, free triiodothyronine and plasma proteins which bind thyroid hormone do not associate with DNA. Thus, the nuclear localization of thyroid hormone in target tissues may be explained by the association of its receptors with DNA.  相似文献   

2.
The binding of thyroid hormone receptors to DNA   总被引:1,自引:0,他引:1  
The behaviour of tri-iodothyronine (T3)- and thyroxine (T4)-receptor complexes when bound to native DNA-cellulose is reported. Equal and large proportions of both T3- and T4-receptor complexes bind to DNA but although T3-receptor complexes are 99% recoverable by 0.5 M NaCl buffer elution, only 60-70% of the T4-receptor complexes are regained. The balance appears as free T4, apparently released as the T4-receptor complexes bind to the DNA whilst the corresponding receptor remains bound. This effect is independent of T4-receptor complex/DNA ratio up to ca. 4 fmol/micrograms DNA, of the presence of an equal amount of unoccupied receptor and of an eight-fold concentration range of both T4-receptor complex and DNA at a fixed ratio, in the cellulose matrix. Pre-formed receptor-DNA material, likewise, only accepts some 60% of the expected quantity of T4 whereas the capacity for T3 appears to be similar to that of free receptors.  相似文献   

3.
Ligand-binding domain of estrogen receptors   总被引:1,自引:0,他引:1  
  相似文献   

4.
5.
The effects of thyroid hormone agonists on thyroid hormone receptor (TR)/DNA complex formation was investigated to elucidate the mechanism by which TRs transactivate genes in response to ligand. The data, obtained from gel shift experiments, indicate that thyroid hormones alter the conformation of TRs bound to DNA, irrespective of if the element is occupied by monomeric TR, homodimeric TR/TR, or heterodimeric complexes with the retinoid receptors RAR or RXR. Furthermore, triiodo-thyronine (T3) prevents 2 TR molecules from binding to oligonucleotides containing direct repeats or inverted palindromes of the consensus AGGTCA motif, an effect that was not detected with palindromic elements. Heterodimers bound to direct repeats were less affected: RXR/TR were fully and RAR/TR complexes partially resistant to thyroid hormone. The data suggest that a ligand-induced conformational change in TR prevents double TR occupancy of a response element containing 2 direct repeats of the consensus binding motif, possibly by steric hindrance, whereas such an event does not prevent TR/RXR heterodimers from binding to DNA. Finally, our data show that a monomeric, liganded TR bound preferentially to the second half site in a AGGTCActcaAGGTCA element, and therefore indicate that nucleotides adjacent to the consensus half site contribute to binding specificity.  相似文献   

6.
7.
Rat liver nuclear thyroid hormone receptor was subjected to limited trypsin digestion, and the tryptic fragment of the 3,5,3'-triiodo-L-thyronine (T3)-receptor complex was characterized. Rat liver nuclear thyroid hormone receptor is an asymmetrical protein with Stokes radius of 34 A, sedimentation coefficient of 3.4 S, and molecular weight of 49,000. A globular T3-receptor complex with Stokes radius of 22 A, sedimentation coefficient of 2.8 S, and molecular weight of 26,000 was obtained by tryptic digestion. This fragment had no DNA binding activity, whereas undigested receptor showed significant DNA binding activity. Addition of undigested receptor to the tryptic fragment did not restore DNA binding activity of digested receptor, nor did mixing inhibit DNA binding activity of undigested receptor complex. Undigested receptor bound to core histones, and this activity was stronger than with other proteins tested (H1 histone, cytochrome c, and ovalbumin). The tryptic fragment of receptor maintained core histone binding activity comparable to that of undigested receptor. The tryptic fragment had affinity for T3 comparable to undigested receptor as assessed by Scatchard analysis and the same rate for dissociation of [125I]T3 from receptor. The tryptic fragment of the T3-receptor complex was more stable than undigested receptor at 43 degrees C. Digestion of receptor unoccupied by T3 caused a significantly larger loss of T3 binding capacity than did digestion of T3-occupied receptor, suggesting a protective effect of T3 on a second trypsin-sensitive site on the receptor, which, when cut, destroys T3 binding activity.  相似文献   

8.
Recent studies from this laboratory have demonstrated the presence of thyroid hormone response elements (TREs) in the 5'-flanking region of the rat alpha and TSH beta subunit genes. Using an avidin-biotin complex DNA binding assay, we have shown that these TREs bind the thyroid hormone (T3) receptor present in nuclear extracts of GH3 cells, as well as the in vitro synthesized Hc-erbA beta, which has been identified as a member of the family of T3 receptors. The binding of Hc-erbA beta to the alpha subunit TRE can be enhanced 3-4-fold by including GH3 nuclear extract in the binding assay. Binding to the TRE present in the TSH beta gene or the rat growth hormone gene was similarly enhanced, although to a lesser degree. The enhanced binding activity is trypsin-sensitive and heat labile, and is not reproduced by the addition of histones, bovine serum albumin, or cytosol instead of nuclear extract. Gel exclusion chromatography suggests a molecular size of approximately 65,000 Da. This protein, which is present in several different cell types, is also able to complement binding of the rat erbA alpha-1 and the pituitary-specific erbA beta-2 forms of the receptor. These data suggest that the binding of the T3 receptor to a TRE is augmented by another nuclear protein, which may be involved in the mechanism of action of thyroid hormone.  相似文献   

9.
I have measured the interaction of T3 with highly soluble, expanded, rat liver chromatin using a new assay for the study of hormone binding to nucleoprotein. Bound hormone and free hormone were rapidly and quantitatively separated by the adsorption of the hormone-nucleoprotein complex onto hydroxylapatite. This procedure satisfies several criteria for a successful binding assay: (1) The binding capacity is stable throughout the time required to reach equilibrium, (2) the ratio of specific to nonspecific binding (signal/noise) is at least 20:1, (3) large numbers of samples can be handled easily, (4) the amount of bound hormone is directly proportional to the quantity of chromatin employed, (5) the hormone and its analogs display a range of affinities for the binding site, and (6) the binding occurs to a limited number of sites, over a free hormone concentration range which is similar to the hormone concentrations found in vivo.  相似文献   

10.
Major progress has been achieved in the mechanism of action of thyroid hormones thanks to the identification of the T3 receptor as the product of the proto-oncogene c-erbA. Recognition of subsets of receptors with and without T3-binding properties and of the interaction of different receptors with each other leads to new insights in cell regulation and development. In thyroid hormone resistance, distinct mutations in the T3-binding domain of thyroid hormone receptor (TR)beta have been identified in unrelated families. No correlation between the type of mutation and tissue resistance has been established. Mutant TRs bind to thyroid hormone response elements (TREs) on both negative or positive T3-controlled genes. Subjects with heterozygous TR beta gene deletion are not affected, supporting the hypothesis that mutant TRs act through a dominant negative effect. In generalized thyroid hormone resistance, mutated TR beta may interfere through competition for TREs and/or formation of inactive dimers. Finally, deficiency in T3 receptor auxiliary protein or other accessory proteins or competition between mutant and normal TRs for these factors is not excluded.  相似文献   

11.
The neurotrophins influence survival and maintenance of vertebrate neurons in the embryonic, early post-natal and post-developmental stages of the nervous system. Binding of neurotrophins to receptors encoded by the gene family trk initiates signal transduction into the cell. trkA interacts preferably with nerve growth factor (NGF), trkB with brain-derived neurotrophic factor (BDNF) and neurotrophin-4/5 (NT-4/5) and trkC with neurotrophin-3 (NT-3). By constructing 17 different chimeras and domain deletions of the human trk receptors and analyzing their binding affinities to the neurotrophins we have shown that an immunoglobulin-like domain located adjacent to the transmembrane domain is the structural element that determines the interaction of neurotrophins with their receptors. Chimeras of trkC where this domain was exchanged for the homologous sequences from trkB or trkA gained high affinity binding to BDNF or NGF respectively, while deletion of this domain in trkC or trkA abolished binding to NT-3 or NGF respectively. This domain alone retained affinities to neurotrophins similar to the full-length receptors and when expressed on NIH 3T3 cells in fusion with the kinase domain showed neurotrophin-dependent activation.  相似文献   

12.
The biochemical and pharmacological properties of nuclear [3H]flunitrazepam in brain tissues were studied. Nuclear [3Hflunitrazepam binding is saturable for both central and peripheral binding sites. Inosine and hypoxanthine displace nuclear [3H]flunitrazepam binding with greater potency than the membrane [3H]flunitrazepam binding. Triiodothyronine (T3) increases the maximum number of binding sites (Bmax) of nuclear [3H]flunitrazepam binding in vitro while thyroxine (T4) does not have any effect. Diazepam reduces the affinity of nuclear125I-T3 binding in vitro, while the Bmax is not affected significantly. Mild digestion of chromatin, using micrococcal nuclease, reveals that a major portion of nuclear [3H]flunitrazepam binding sites are located on chromatin. These data suggest a functional role for nuclear benzodiazepine binding and a possible modulatory effect of benzodiazepines on T3 binding with its nuclear receptors.  相似文献   

13.
Thyroid hormones have a profound influence on human development and disease. The hypothalamic-pituitary-thyroid axis involves finely tuned feedback mechanisms to maintain thyroid hormone (TH) levels. Despite the important role of TH-negative feedback in regulating this axis, the mechanism by which this occurs is not clearly defined. Previous in vivo studies suggest separate roles for the two thyroid hormone receptor isoforms, THRA and THRB, in this axis. We performed studies using a unique pituitary thyrotroph cell line (TαT1.1) to determine the relative roles of THRA and THRB in the regulation of Tshb. Using chromatin immunoprecipitation assays, we found that THRB, not THRA, bound to the Tshb promoter. By selectively depleting THRB, THRA, or both THRA and THRB in TαT1.1 cells, we found that simultaneous knockdown of both THRB and THRA abolished T(3)-mediated down-regulation of Tshb at concentrations as high as 100 nm T(3). In contrast, THRA knockdown alone had no effect on T(3)-negative regulation, whereas THRB knockdown alone abolished T(3)-mediated down-regulation of Tshb mRNA levels at 10 nm but not 100 nm T(3) concentrations. Interestingly, chromatin immunoprecipitation assays showed that THRA becomes enriched on the Tshb promoter after knockdown of THRB. Thus, a likely mechanism for the differential effects of THR isoforms on Tshb may be based on their differential DNA-binding affinity to the promoter.  相似文献   

14.
Three monoclonal antibodies (M110, A82, and A917) were obtained by fusing myeloma cells and spleen cells from mice immunized with partially purified rabbit mammary gland prolactin (PRL) receptors. All 3 antibodies were capable of complete inhibition of 125I-ovine prolactin (oPRL) binding to rabbit mammary PRL receptors in either particulate or soluble form. M110 showed slightly greater potency than oPRL in competing for 125I-oPRL binding. These antibodies also inhibited PRL binding to microsomal fractions from rabbit liver, kidney, adrenal, ovary, and pig mammary gland, although A82 showed poor inhibition in pig mammary gland. There was no cross-reaction of any of the 3 monoclonal antibodies (mAbs) for the other species tested: human (T-47D breast cancer cells) and rat (liver, ovary). In order to confirm that these antibodies are specific to the binding domain, antibodies were purified, iodinated, and binding characteristics were investigated. 125I-M110 and 125I-A82 binding was completely inhibited by lactogenic hormones, whereas nonlactogenic hormones did not cross-react. Competition of 125I-M110 by oPRL (ID50 = 0.44 nM) was comparable to that of 125I-oPRL by unlabeled oPRL (ID50 = 0.35 nM), while 125I-A917 binding was only partially competed (30-60%) by lactogenic hormones. Tissue and species specificity of labeled antibody binding paralleled results of binding inhibition experiments using 125I-oPRL. In addition, A82 and A917 completely inhibited 125I-M110 binding. In contrast, 125I-A82 binding was stimulated by A917 and 125I-A917 binding was stimulated by A82. These findings indicate that monoclonal antibodies can be readily prepared from partially purified PRL receptors from rabbit mammary gland; two antibodies (M110 and A82) are hormone binding site specific while the other (A917) binds a domain partially but not entirely distinct from the hormone binding site, and that all three antibodies have strong species specificity.  相似文献   

15.
It is well established that in vivo administered labelled TBPA penetrates into liver, brain and lung cells, is translocated from cytosol into the nucleus and is accepted by chromatin without being affected by modifications touching upon the antigenic determinants of this protein. Electron microscopic autoradiography demonstrated that 125I-TBPA translocated from cytosol into the nucleus is localized on the border between hetero- and euchromatin. The data obtained may serve as an additional proof of the universal structure of intracellular thyroid hormone receptors and suggest that TBPA participate in manifestation of genetic effects of thyroid hormones.  相似文献   

16.
17.
E E Biswas  S B Biswas 《Biochemistry》1999,38(34):10929-10939
We have analyzed the mechanism of single-stranded DNA (ssDNA) binding mediated by the C-terminal domain gamma of the DnaB helicase of Escherichia coli. Sequence analysis of this domain indicated a specific basic region, "RSRARR", and a leucine zipper motif that are likely involved in ssDNA binding. We have carried out deletion as well as in vitro mutagenesis of specific amino acid residues in this region in order to determine their function(s) in DNA binding. The functions of the RSRARR domain in DNA binding were analyzed by site-directed mutagenesis. DnaBMut1, with mutations R(328)A and R(329)A, had a significant decrease in the DNA dependence of ATPase activity and lost its DNA helicase activity completely, indicating the important roles of these residues in DNA binding and helicase activities. DnaBMut2, with mutations R(324)A and R(326)A, had significantly attenuated DNA binding as well as DNA-dependent ATPase and DNA helicase activities, indicating that these residues also play a role in DNA binding and helicase activities. The role(s) of the leucine zipper dimerization motif was (were) determined by deletion analysis. The DnaB Delta 1 mutant with a 55 amino acid C-terminal deletion, which left the leucine zipper and basic DNA binding regions intact, retained DNA binding as well as DNA helicase activities. However, the DnaB Delta 2 mutant with a 113 amino acid C-terminal deletion that included the leucine zipper dimerization motif, but not the RSRARR sequence, lost DNA binding, DNA helicase activities, and hexamer formation. The major findings of this study are (i) the leucine zipper dimerization domain, I(361)-L(389), is absolutely required for (a) dimerization and (b) ssDNA binding; (ii) the base-rich RSRARR sequence is required for DNA binding; (iii) three regions of domain gamma (gamma I, gamma II, and gamma III) differentially regulate the ATPase activity; (iv) there are likely three ssDNA binding sites per hexamer; and (v) a working model of DNA unwinding by the DnaB hexamer is proposed.  相似文献   

18.
The binding of thyroid hormone receptors to DNA is enhanced by heterodimerization with nuclear proteins. One such heterodimerization partner has recently been characterized as the retinoid X receptor. 9-cis-Retinoic acid has been identified as a natural ligand for retinoid X receptors, suggesting a potential receptor-mediated interaction between thyroid hormone and 9-cis-retinoic acid in the regulation of thyroid hormone-responsive genes. A transient cotransfection assay was used to test for such an interaction. When a complex thyroid hormone response element composed of both direct and inverted repeat hexamers was tested, these two ligands activated gene expression synergistically. In contrast, when the response element consisted only of directly repeated hexamers, unliganded retinoid X receptors enhanced thyroid hormone responsiveness, but 9-cis-retinoic acid induced no additional activation. The results suggest a unique mechanism to achieve differential suggest a unique mechanism to achieve differential thyroid hormone sensitivity of thyroid hormone-responsive genes within a cell. Genes with appropriate response elements will show amplification of the thyroid hormone response by 9-cis-retinoic acid in the presence of retinoid X receptors; other thyroid hormone-responsive genes will be influenced by retinoid X receptors, but not 9-cis-retinoic acid.  相似文献   

19.
The receptors for thyroid hormone (T3R) and retinoic acid (RAR) are members of a nuclear receptor subfamily that are capable of recognizing similar DNA sequences. Native response elements for T3R and RAR consist of two or more putative half-site binding motifs organized as imperfect direct or inverted repeats separated by different sized nucleotide gaps. To clarify how T3R, RAR, and related factors recognize DNA response elements, we analyzed the interaction of purified receptors with a series of inverted and direct repeats of an idealized AGGTCA half-site separated by different sized nucleotide gaps. Our results indicate that RAR and T3R can bind to half-sites as monomers and, depending on the orientation and distance between half-sites, also bind as homodimers or T3R-RAR heterodimers. T3R also binds to certain DNA elements as a heterodimer with one or more nuclear factors from eucaryotic cells. Thus, the orientation and spacing of half-sites play a central role in determining which configuration of receptors and nuclear factors will interact with a specific DNA element. This along with the ability of these factors to participate in reversible protein-protein interactions serve to broaden and diversify the responses mediated by T3R, RAR, and related members of this nuclear receptor subfamily.  相似文献   

20.
Escherichia coli vectors were constructed for the production of a protein complex that mimics the native ecdysone receptor (EcR) isolated from Drosophila. The two steroid receptors, ultraspiracle (USP) and EcR, were expressed as truncations, retaining primarily the hormone binding domains. The recombinant receptor complex was able to mimic the pharmacology of the native receptor with respect to both synthetic and natural agonists. USP and EcR fusion proteins could be expressed in separate cell lines and then recombined following isolation to yield a ligand binding preparation with a dissociation constant (K(D)) for Ponasterone A of 1.5 nM and a total yield of 1.9 pmol ligand binding sites/mg protein. Alternatively, the simultaneous coexpression of both receptors increased yields by several orders of magnitude to 6 nmol ligand binding sites/mg protein with a K(D) of 0.6 nM. Chromatographic analysis under native conditions showed that EcR, when expressed alone, migrated as a variety of complexes, mostly coming out in the void volume as denatured, insoluble, aggregate. In contrast, purified extracts of coexpressed EcR and USP eluted as a single peak with a mobility indicating a heterodimer. The majority of the coexpressed fusion receptors, following purification, formed functional steroid binding sites. A detailed scheme is provided for the expression and isolation of milligram quantities of highly purified receptor dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号