首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypes of cat plasma apolipoprotein A4 (APOA4), antithrombin 3 (AT3), alpha 1B-glycoprotein (A1BG), transferrin (TF), vitamin D-binding protein (GC), and an unidentified pretransferrin (PTF) were determined by using simple methods of horizontal, nondenaturing gel electrophoresis followed by protein staining. The cat proteins were identified by immunoblotting using antisera for human plasma proteins. Three alleles were reported for each of TF and PTF, and two alleles were reported for each of GC, APOA4, AT3, and A1BG. The mongrels and Persians showed a high degree of polymorphism at most of the loci whereas the Birmans exhibited much less variation. Genetic evidence indicating the occurrence of a monomeric and a dimeric form of APOA4 in cat plasma was reported.  相似文献   

2.
Mass spectrometric evidence presented here characterizes the genotype-dependent glycosylation patterns for each of the three major allele products of Vitamin D Binding Protein found in the general human population. Findings based on the analysis of over 100 individual plasma samples demonstrated that all DBP allele products, except GC*2, are modified (10-25 mol%) with a linear (NeuNAc) 1(Gal) 1(GalNAc) 1 trisaccharide and, to a much lesser extent (1-5 mol%) with a trisaccharide-independent (Gal) 1(GalNAc) 1 dissaccharide. GC*2 protein contains the disaccharide but remains completely free of the trisaccharide, even in heterozygous individuals possessing a second gene product that is modified with the trisaccharide. Thus, all allelic forms of DBP except GC*2 possess two independent O-glycosylation sites occupied by separate, yet consistently isomass oligosaccharides and, despite a consensus sequence, lack N-glycosylation.  相似文献   

3.
The group-specific component (GC), also known as the vitamin D-binding protein, transports vitamin D and its metabolites in plasma to target tissues throughout the body. The GC gene shares an evolutionary origin with genes encoding albumin (ALB) and alpha-fetoprotein (AFP). All three genes are descendants of an evolutionary ancestor that arose from an intragenic triplication. As a result, each gene is composed of three homologous domains. The study described here characterizes and compares mouse GC to the corresponding nucleotide and amino acid sequences of GC from human and rat. The deduced amino acid sequence of mouse GC was 78% identical to human and 91% identical to rat GC. The results suggest that, unlike the corresponding sequences in the ALB and AFP genes, chromosomal sequences encoding the first domain and the leader sequence of the GC gene have specifically been conserved throughout vertebrate evolution. Protection of domain I during evolution may correlate with an important functional aspect of its sequence. The mouse GC gene was mapped to chromosome 5, where the ALB and AFP genes are also located, demonstrating conservation of the three genes in vertebrate species.  相似文献   

4.
Previous biochemical and cytochemical studies have indicated that in human term placenta the enzyme guanylate cyclase (GC) is associated mostly with the cytosolic fraction of homogenates and localized on the syncytiotrophoblast microvillous border. In the present study we have shown cytochemically the GC particulate form in early human placenta using guanylyl-imidodiphosphate [Gpp(NH)p] as substrate and NaN3 as activator. In samples of placental villi taken from the 6th to 12th week of pregnancy, the GC reaction product was always found on the apposing Langhans cytotrophoblast and syncytiotrophoblast plasma membranes. Furthermore, GC was present on cells in mitosis of the Langhans cytotrophoblast. From the 11th week GC was also visible on basal plasma membranes of Langhans cytotrophoblast and on endothelial cells of fetal capillaries. In samples of human term placenta GC was detectable on the syncytiotrophoblast microvillous border. This suggests a shift of enzyme localization during pregnancy.  相似文献   

5.
Selection of B cells subjected to hypermutation in germinal centres (GC) during T cell-dependent (TD) antibody responses yields memory cells and long-lived plasma cells that produce high affinity antibodies biased to foreign antigens rather than self-antigens. GC also form in T-independent (TI) responses to polysaccharide antigens but failed selection results in GC involution and memory cells are not generated. To date there are no markers that allow phenotypic distinction of T-dependent and TI germinal centre B cells. We compared the global gene expression of GC B cells purified from mice immunized with either TD or TI antigens and identified eighty genes that are differentially expressed in TD GC. Significantly, the largest cluster comprises genes involved in growth and guidance of neuron axons such as Plexin B2, Basp1, Nelf, Shh, Sc4mol and Sult4alpha. This is consistent with formation of long neurite (axon and dendrite)-like structures by mouse and human GC B cells, which may facilitate T:B cell interactions within GC, affinity maturation and B cell memory formation. Expression of BASP1 and PLEXIN B2 protein is very low or undetectable in resting and TI GC B cells, but markedly upregulated in GC B cells induced in the presence of T cell help. Finally we show some of the axon growth genes upregulated in TD-GC B cells including Basp1, Shh, Sult4alpha, Sc4mol are also preferentially expressed in post-GC B cell neoplasms.  相似文献   

6.
Genetic polymorphism was detected in the red deer (Cervus elaphus L.), plasma proteins, plasminogen (PLG) and vitamin D binding protein (GC) using antiserum to human proteins. The affinity of the antisera to deer plasma was less than 10% that of a human standard but they bound specifically to proteins of molecular weight expected for GC and PLG. Three codominant alleles of GC and five of PLG were observed. In a set 124 farmed deer calves and their parents, six calves had genotypes which were not consistent with the expectations of inheritance. Further inconsistencies were found when variation in isocitrate dehydrogenase (IDH) and transferrin (TRF) was examined. Using genetic models which included pedigree error parameters the data were shown to be consistent with genetic inheritance of all loci in a data set containing approximately 4.8% (SE 1.4%) parent-progeny pedigree mismatches. In samples from four deer populations representative of the red deer introduced to New Zealand the GC and PLG polymorphisms provided a probability of paternity exclusion (PE) of between 0.34 and 0.54 and when IDH and TRF were also included the PE was between 0.46 and 0.66. The four populations differed significantly in allele frequency, which supports historical evidence that they originate from separate introductions of small numbers of European red deer.  相似文献   

7.
Inactivation of tumour suppressor genes by promoter methylation plays an important role in the initiation and progression of gastric cancer (GC). Transmembrane 106A gene (TMEM106A) encodes a novel protein of previously unknown function. This study analysed the biological functions, epigenetic changes and the clinical significance of TMEM106A in GC. Data from experiments indicate that TMEM106A is a type II membrane protein, which is localized to mitochondria and the plasma membrane. TMEM106A was down‐regulated or silenced by promoter region hypermethylation in GC cell lines, but expressed in normal gastric tissues. Overexpression of TMEM106A suppressed cell growth and induced apoptosis in GC cell lines, and retarded the growth of xenografts in nude mice. These effects were associated with the activation of caspase‐2, caspase‐9, and caspase‐3, cleavage of BID and inactivation of poly (ADP‐ribose) polymerase (PARP). In primary GC samples, loss or reduction of TMEM106A expression was associated with promoter region hypermethylation. TMEM106A was methylated in 88.6% (93/105) of primary GC and 18.1% (2/11) in cancer adjacent normal tissue samples. Further analysis suggested that TMEM106A methylation in primary GCs was significantly correlated with smoking and tumour metastasis. In conclusion, TMEM106A is frequently methylated in human GC. The expression of TMEM106A is regulated by promoter hypermethylation. TMEM106A is a novel functional tumour suppressor in gastric carcinogenesis.  相似文献   

8.
Endogenous trans fatty acids originate from diet, but recent studies also suggest that cis-trans isomerization of fatty acids is possible by nitrogen dioxide radical, a product of NO and nitrite oxidation. We developed a method for quantitative analysis of four trans-arachidonic acids (TAA) in human plasma using isotopic dilution gas chromatography/mass spectrometry (GC/MS) with deuterium-labeled internal standard. Esterification of the plasma fatty acid extract with pentafluorobenzyl (PFB) bromide followed by high-performance liquid chromatography purification yielded a fairly pure fraction containing TAA-PFB esters that was analyzed by GC/MS. Partial separation of the TAA isomers was obtained on various GC columns. Comparison of the retention time with the synthetic standards revealed that all four TAA isomers are present in human plasma. The mean concentration of TAA in human plasma was 20.2ng/ml. The levels of isomers were 12.48+/-1.28, 2.75+/-0.39, and 4.99+/-0.74ng/ml for 5E-AA + 11E-AA, 8E-AA, and 14E-AA, respectively. The identification of TAA in plasma suggests that isomerization of arachidonic acid occurs in vivo. Our method allows distinguishing between the dietary and the NO(2)-dependent mechanisms of trans fatty acid formation and will be useful in defining the role of TAA as an in vivo marker of nitrooxidative stress in clinical and experimental settings.  相似文献   

9.
Glucocorticoid (GC) metabolism by the 11beta-hydroxysteroid dehydrogenase (HSD) system is an important prereceptor regulator of GC action. The HSD enzymes catalyze the interconversion of the endogenous, biologically active GC cortisol and its inactive 11-dehydro metabolite cortisone. The role of the HSD enzymes in the metabolism of synthetic GCs, such as dexamethasone (Dex), is more complex. The human lung is a classic GC-sensitive organ; however, the roles of the HSD enzymes (HSD1 and HSD2) in the human lung are poorly understood. In the present study, we examined the expression of the HSD enzymes in human adult and fetal lung tissues and the human lung epithelial cell line NCI-H441. We observed that human adult and fetal lung tissues, as well as H441 cells, express HSD2 protein and that it is upregulated by Dex (10(-7) M). By contrast, HSD1 protein was undetectable. We also show that the Dex-mediated regulation of surfactant protein A is attenuated by inhibition of HSD2 activity. Furthermore, we demonstrate that unlike the inactive, 11-dehydro metabolite of cortisol (i.e., cortisone), the 11-dehydro metabolite of Dex, 11-dehydro-Dex, competes for binding to the GC receptor (GR) in human lung epithelial cells and retains GR agonist activity. Together, these data suggest that differences exist in the biological activities of the metabolites of cortisol and Dex.  相似文献   

10.
A rapid method for the identification and measurement of four pregnanolone isomers and their polar conjugates in human plasma was developed using a simple quadrupole GC/MS system with electron impact ionization. Steroid levels were measured in the plasma of 13 and three women at delivery with subarachnoidal and epidural analgesia, respectively, and in corresponding samples of umbilical plasma. A good correlation (r=0.94, P<0.001, n=8) was found between the allopregnanolone in maternal plasma determined by GC/MS and that measured by RIA. Epipregnanolone (3β-hydroxy-5β-pregnan-20-one) was identified and measured for the first time in human plasma; its concentration in both maternal and umbilical plasma was much lower than that of other pregnanolone isomers. The levels of 3β-hydroxy-pregnanolone isomers were significantly higher in the umbilical plasma than in the maternal plasma, while the differences in 3-hydroxy-isomers were insignificant. The differences in conjugates were insignificant except in the case of allopregnanolone, the levels of which were lower in umbilical plasma. In all of the pregnanolone isomers, a significantly lower conjugated/unconjugated steroid ratio was found in the umbilical plasma than in the maternal plasma. The possible role of the sulfatation of pregnanolone isomers around parturition is discussed.  相似文献   

11.
Glucocorticoids (GC) often are administered during pregnancy, but despite their widespread use in clinical practice, it remains uncertain how GC exposure affects pro-angiogenic factors and their receptors. We investigated the effects of GC on vascular endothelial growth factor (VEGF), placental growth factor (PIGF), vascular endothelial growth factor receptor 1 (VEGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2) protein and mRNA expressions and investigated the possible association of GC with the Akt/mTOR pathway. We incubated human umbilical vein endothelial cells (HUVECs) with a synthetic GC, triamcinolone acetonide (TA). TA administration caused decreased cellular and soluble VEGF and VEGFR1 protein expressions and increased soluble VEGFR2 expression. VEGF, VEGFR1 and VEGFR2 mRNA expressions were altered in a time and dose dependent manner. PIGF protein expression was unaffected by TA treatment, but PIGF mRNA expression decreased in a dose dependent manner after incubation for 48 and 72 h. Phospho-mTOR and phospho-Akt expressions were unaffected. Phospho-p70S6K and phospho-4EBP1 protein expressions and the vascular network forming capacity of HUVECs decreased in a dose dependent manner. We found that GC exert detrimental effects on angiogenesis by altering cellular and soluble angiogenic protein and mRNA levels, and vascular network forming capacities by the Akt/mTOR pathway.  相似文献   

12.
13.
Amyloid precursor protein (APP) mis-processing and aberrant tau hyperphosphorylation are causally related to the pathogenesis and neurodegenerative processes that characterize Alzheimer's disease (AD). Abnormal APP metabolism leads to the generation of neurotoxic amyloid beta (Abeta), whereas tau hyperphosphorylation culminates in cytoskeletal disturbances, neuronal dysfunction and death. Many AD patients hypersecrete glucocorticoids (GC) while neuronal structure, function and survival are adversely influenced by elevated GC levels. We report here that a rat neuronal cell line (PC12) engineered to express the human ortholog of the tau protein (PC12-htau) becomes more vulnerable to the toxic effects of either Abeta or GC treatment. Importantly, APP metabolism in GC-treated PC12-htau cells is selectively shifted towards increased production of the pro-amyloidogenic peptide C99. Further, GC treatment results in hyperphosphorylation of human tau at AD-relevant sites, through the cyclin-dependent kinase 5 (E.C. 2.7.11.26) and GSK3 (E.C. 2.7.11.22) protein kinases. Pulse-chase experiments revealed that GC treatment increased the stability of tau protein rather than its de novo synthesis. GC treatment also induced accumulation of transiently expressed EGFP-tau in the neuronal perikarya. Together with previous evidence showing that Abeta can activate cyclin-dependent kinase 5 and GSK3, these results uncover a potential mechanism through which GC may contribute to AD neuropathology.  相似文献   

14.
目的:调查TLR家族中哪种TLR受体的配体依赖性激活可引起胃癌细胞的代谢重编程。方法:通过实时荧光定量PCR(RT-qPCR)和蛋白质印迹(WB)在一组人GC细胞中测量TLR家族成员的表达。通过进行Seahorse生物能测定以及测量L-乳酸和活性氧(ROS)的产生,确定激动剂对不同TLR(TLR2、4、9)诱导的人GC细胞的代谢变化;通过RT-qPCR在被刺激的GC细胞中分析了涉及氧化磷酸化和糖酵解的基因的表达;通过Western印迹表征SOD2的表达。结果:由合成分子或全病原体抗原激活的TLR2信号传导增强了胃癌细胞中高表达TLR2的细胞株的糖酵解活性和线粒体呼吸,而配体诱导的TLR4和TLR9活化抑制了线粒体呼吸或细胞外酸化率。同时,涉及葡萄糖代谢和氧化还原系统调节的基因,例如HIF1A,PFKFB3和SOD2,在TLRs下游被上调。结论:由配体诱导的特定TLRs的激活介导了人类GC细胞中不同的代谢表型。TLR2是唯一同时促进OXPHOS和糖酵解的家族成员,这可能导致肿瘤进展。  相似文献   

15.
16.
Our group (Patschan S, Chen J, Gealekman O, Krupincza K, Wang M, Shu L, Shayman JA, Goligorsky MS; Am J Physiol Renal Physiol 294: F100-F109, 2008) previously observed an accumulation of gangliosides coincident with development of cell senescence and demonstrated lysosomal permeabilization in human umbilical vein endothelial cells exposed to glycated collagen I (GC). Therefore, we investigated whether the lysosome-dependent, caspase-independent or type 2-programmed cell death (autophagy) is involved in development of premature senescence of endothelial cells. The cleaved microtubule-associated protein 1 light-chain 3 (LC3), a marker of autophagosome formation, was overexpressed within 24 h of GC treatment; however, by 4-5 days, it was nearly undetectable. Early induction of autophagosomes was associated with their fusion with lysosomes, a phenomenon that later became subverted. Autophagic cell death can be triggered by the products of damaged plasma membrane, sphingolipids, and ceramide. We observed a clustering of membrane rafts shortly after exposure to GC; later, after 24 h, we observed an internalization, accompanied by an increased acid sphingomyelinase activity and accumulation of ceramide. Pharmacological inhibition of autophagy prevented development of premature senescence but did lead to the enhanced rate of apoptosis in human umbilical vein endothelial cells exposed to GC. Pharmacological induction of autophagy resulted in reciprocal changes. These observations appear to represent a mechanistic molecular cascade whereby advanced glycation end products like GC induce sphingomyelinase activity, accumulation of ceramide, clustering, and later internalization of lipid rafts.  相似文献   

17.
Gastric cancer (GC) is one of the most common human malignancies worldwide, but the molecular mechanism of GC has not been fully elucidated. Tetraspanin 31 (TSPAN31) has been rarely studied in human malignant tumors. This study aimed to investigate the effects of TSPAN31 on GC. We analyzed GC tissues through high-throughput sequencing technology and chose TSPAN31 with high expression. The expression of TSPAN31 in GC was analyzed through bioinformatics website and qRT-PCR. The protein level of TSPAN31 in GC tissues was determined by western blot and immunochemistry. The proliferation, migration, and apoptosis of GC cells were detected by the cell counting kit-8, transwell, and apoptosis experiments. METTL1 and CCT2 that may co-express with TSPAN31 were predicted by the GEPIA database, and analyzed the correlation between the expression levels of TSPAN31, METTL1 and CCT2. The results shows TSPAN31 was highly expressed in GC tissues, and high expression of TSPAN31 was found to result in poor prognosis of patients with GC. TSPAN31 could regulate the proliferation, migration and apoptosis of GC cells. The relative expression levels of TSPAN31, METTL1 and CCT2 in GC were positively correlated. Low expression of TSPAN31 could partially reverse the effect of high expression of METTL1 and CCT2 on the tumor progression of GC cells. In conclusion, TSPAN31 was highly expressed in GC tissues and led to poor prognosis of patients with GC. TSPAN31 may regulate the proliferation, migration, and apoptosis of GC cells. This regulatory mechanism may be achieved through co-expression with METTL1 and CCT2.  相似文献   

18.
In this study, we identified the multifunctional protein GC1q-R as a novel vasopressin V(2) receptor (V(2)R) interacting protein. For this purpose, we have developed a proteomic approach combining pull-down assays using a cyclic peptide mimicking the third intracellular loop of V(2)R as a bait and mass spectrometry analyses of proteins isolated from either rat or human kidney tissues or the HEK 293 cell line. Co-immunoprecipitation of GC1q-R with the c-Myc-tagged h-V(2)R expressed in a HEK cell line confirmed the existence of a specific interaction between GC1q-R and the V(2) receptor. Then, construction of a mutant receptor in i3 loop allowed us to identify the i3 loop arginine cluster of the vasopressin V(2) receptor as the interacting determinant for GC1q-R interaction. Using purified receptor as a bait and recombinant (74-282) GC1q-R, we demonstrated a direct and specific interaction between these two proteins via the arginine cluster.  相似文献   

19.
The lysosomal membrane protein type 2 is a novel identified lysosomal sorting receptor for β-glucocerebrosidase (GC). Mutations in both genes underlie human pathologies causing action myoclonus-renal failure syndrome (AMRF) and Gaucher disease (GD), respectively. We now demonstrate that the lumenal acidification mediated by the vacuolar (H(+) )-ATPase triggers the dissociation of LIMP-2 and GC in late endosomal/lysosomal compartments. Moreover, we identified a single histidine residue in LIMP-2 that is necessary for LIMP-2 and GC binding. This residue is in close proximity to a proposed coiled-coil domain, which determines the binding to GC and may function as a critical pH sensor.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号