首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cardiac sarcoplasmic reticulum (CSR), isolated from dog hearts, was shown to be asymmetric in the distribution of phospholipids across the CSR bilayer. Phosphatidylethanolamine was mostly resident in the outer leaflet, phosphatidylcholine was equally distributed across both monolayers and phosphatidylserine was found primarily in the inner monolayer. This distribution of headgroups is similar to that found in fast skeletal muscle sarcoplasmic reticulum (SSR); however, the asymmetry in CSR is not as striking as that in SSR. Phospholipids retained by the CSR calcium pump protein (CaATPase) after detergent ``stripping' were similar to those intimate to the SSR CaATPase, although the percentages of unsaturated phospholipids and plasmalogenic phospholipids are not as great as in the skeletal system. Lipids associated with the CSR CaATPase following DFDNB cross-linking showed a preference for retention of the aminophospholipids, again similar to the SSR CaATPase. Because the nonrandom distribution of membrane lipids modifies SSR function, it is likely these membrane lipids impact in situ the function of the CSR. Received: 19 December 1997/Revised: 3 April 1998  相似文献   

2.
Magnesium-dependent ATPase (MgATPase) activity is associated with many E1-E2 or P-type transport ATPases including the sarcoplasmic reticulum (SR) calcium ATPase. The SR isolated from rat heart has a MgATPase activity which is 6-12 times faster than the MgATPase activity of the SR isolated from dog heart. To determine the origin of the high MgATPase activity of rat heart SR, we compared and contrasted cardiac SR isolated from both species. The preparations were similar in the following ways: (i) contamination by other organelles; (ii) the comigration of MgATPase activity with calcium-dependent ATPase (CaATPase) activity through a sucrose gradient; (iii) a similar ATPase activity sensitivity to pH and ATP concentration; (iv) the high and similar of sensitivity of ATPase activity to detergent; and (v) a similar protein profile. In both preparations, a single protein in the 105,000-Da region of polyacrylamide gels was phosphorylated by ATP, and the phosphorylated species was an acylphosphate formed in the presence and absence of calcium. Dimethyl sulfoxide, which slows acylphosphoenzyme breakdown, markedly inhibited both CaATPase and MgATPase activities of both preparations but not other enzyme activities. Importantly, the specific inhibitor of the SR calcium pump, thapsigargin, completely inhibited the CaATPase activity with an I50 of 6-7 nM; however, a higher concentration (I50 of 2 microM) was required to inhibit the MgATPase activity of the rat cardiac SR. These results provide evidence that the MgATPase activity of rat cardiac SR is part of the enzyme cycle of the calcium ATPase protein.  相似文献   

3.
G Anderle  R Mendelsohn 《Biochemistry》1986,25(8):2174-2179
CaATPase from rabbit skeletal muscle has been isolated, purified, delipidated, and reconstituted with retention of ATPase activity into lipid vesicles consisting respectively of 1,2-dipalmitoylphosphatidylethanolamine, 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), 1-stearoyl-2-oleoylphosphatidylcholine (SOPC), and egg sphingomyelin. The effect of the enzyme on phospholipid order and melting characteristics were determined with Fourier-transform infrared spectroscopy. Taken together with prior data from this laboratory for 1,2-dipalmitoylphosphatidylcholine and 1,2-dioleoylphosphatidylcholine (DOPC), as well as for native sarcoplasmic reticulum (SR), three types of lipid response to protein incorporation have been observed: (1) Phospholipids with high levels of acyl chain unsaturation (DOPC or native SR) have their lipid acyl chains slightly ordered by CaATPase incorporation. The effect of protein on the gel-liquid crystal phase transition cannot be easily determined, since the cooperative melting even in these systems occurs at temperature well below 0 degrees C. (2) Phospholipids with saturated acyl chains show slightly lowered melting temperatures and reduced cooperativity of melting upon CaATPase insertion. In addition, protein induces (at most) slight disorder into the acyl chains at temperatures removed from the lipid melting point. (3) The strongest response is observed for phospholipids containing one saturated and one unsaturated chain (POPE or SOPC) or heterogeneous systems with low levels of unsaturation (egg sphingomyelin). In these cases, relatively low protein levels diminish the magnitude of or completely abolish the phospholipid phase transition. In addition, substantial disorder is introduced into the acyl chain compared with the pure lipid both above and below its transition temperature.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The investigation focuses on the phospholipid composition of the sarcolemma of cultured neonatal rat heart cells and on the distribution of the phospholipid classes between the two monolayers of the sarcolemma. The plasma membranes are isolated by 'gas-dissection' technique and 38% of total cellular phospholipid is present in the sarcolemma with the composition: phosphatidylethanolamine (PE) 24.9%, phosphatidylcholine (PC) 52.0%, phosphatidylserine/phosphatidylinositol (PS/PI) 7.2%, sphingomyelin 13.5%. The cholesterol/phospholipid ratio of the sarcolemma is 0.5. The distribution of the phospholipids between inner and outer monolayer is defined with the use of two phospholipases A2, sphingomyelinase C or trinitrobenzene sulfonic acid as lipid membrane probes in whole cells. The probes have access to the entire sarcolemmal surface and do not produce detectable cell lysis. The phospholipid classes are asymmetrically distributed: (1) the negatively charged phospholipids, PS/PI are located exclusively in the inner or cytoplasmic leaflet; (2) 75% of PE is in the inner leaflet; (3) 93% of sphingomyelin is in the outer leaflet; (4) 43% of PC is in the outer leaflet. The predominance of PS/PI and PE at the cytoplasmic sarcolemmal surface is discussed with respect to phospholipid-ionic binding relations between phospholipids and exchange and transport of ions, and the response of the cardiac cell on ischemia-reperfusion.  相似文献   

5.
Biological membranes exhibit an asymmetric distribution of phospholipids. Phosphatidylserine (PS) is an acidic phospholipid that is found almost entirely on the interior of the cell where it is important for interaction with many cellular components. A less well understood phenomenon is the asymmetry of the neutral phospholipids, where phosphatidylcholine (PC) is located primarily on exterior membranes while phosphatidylethanolamine (PE) is located primarily on interior membranes. The effect of these neutral phospholipids on protein-phospholipid associations was examined using four cytoplasmic proteins that bind to membranes in a calcium-dependent manner. With membranes containing PS at a charge density characteristic of cytosolic membranes, protein kinase C and three other proteins with molecular masses of 64, 32, and 22 kDa all showed great selectively for membranes containing PE rather than PC as the neutral phospholipid; the calcium requirements for membrane-protein association of the 64- and 32-kDa proteins were about 10-fold lower with membranes containing PE; binding of the 22-kDa protein to membranes required the presence of PE and could not even be detected with membranes containing PC. Variation of the PS/PE ratio showed that membranes containing about 20% PS/60% PE provided optimum conditions for binding and were as effective as membranes composed of 100% PS. Thus, PE, as a phospholipid matrix, eliminated the need for membranes with high charge density and/or reduced the calcium concentrations needed for protein-membrane association. A surprising result was that PKC and the 64- and 32-kDa proteins were capable of binding to neutral membranes composed entirely of PE/PC or PC only. The different phospholipid headgroups altered only the calcium required for membrane-protein association. For example, calcium concentrations at the midpoint for association of the 64-kDa protein with membranes containing PS, PE/PC, or PC occurred at 6, 100, and 20,000 microM, respectively. Thus, biological probes detected major differences in the surface properties of membranes containing PE versus PC, despite the fact that both of these neutral phospholipids are often thought to provide "inert" matrices for the acidic phospholipids. The selectivity for membranes containing PE could be a general phenomenon that is applicable to many cytoplasmic proteins. The present study suggested that the strategic location of PE on the interior of the membranes may be necessary to allow some membrane-protein associations to occur at physiological levels of calcium and PS.  相似文献   

6.
Sarcoplasmic reticulum (SR) membranes isolated from rabbit and lobster muscles have similar phospholipid classes, but they differ in plasmalogen content. The plasmalogenic species are mostly distributed among phosphatidylethanolamines (PE's) and make up about 62% of the total in rabbit SR and about 46% in lobster membranes. Lobster SR phospholipids contain large amounts of polyunsaturated fatty acids which are present in low amounts in rabbit membranes. The total unsaturated fatty acids of phosphatidylcholines (PC's) represent about 53% and 73% of the total fatty chains for rabbit and lobster SR, respectively. The values found for PE's were about 56% and 64%, respectively. Furthermore, lobster membranes contain significant amounts of PC and PE molecular species with unsaturated fatty acids in positions 1 and 2, whereas rabbit SR contain low amounts.  相似文献   

7.
Phospholipid asymmetry in the isolated sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The total phospholipid content and distribution of phospholipid species between the outer and inner monolayers of the isolated sarcoplasmic reticulum membrane was measured by phospholipase A2 activities and neutron diffraction. Phospholipase measurements showed that specific phospholipid species were asymmetric in their distribution between the outer and inner monolayers of the sarcoplasmic reticulum lipid bilayer; phosphatidylcholine (PC) was distributed 48/52 +/- 2% between the outer and inner monolayer of the sarcoplasmic reticulum bilayer, 69% of the phosphatidyl-ethanolamine (PE) resided mainly in the outer monolayer of the bilayer, 85% of the phosphatidylserine (PS) and 88% of the phosphatidylinositol (PI) were localized predominantly in the inner monolayer. The total phospholipid distribution determined by these measurements was 48/52 +/- 2% for the outer/inner monolayer of the sarcoplasmic reticulum lipid bilayer. Sarcoplasmic reticulum phospholipids were biosynthetically deuterated and exchanged into isolated vesicles with both a specific lecithin and a general exchange protein. Neutron diffraction measurements directly provided lipid distribution profiles for both PC and the total lipid content in the intact sarcoplasmic reticulum membrane. The outer/inner monolayer distribution for PC was 47/53 +/- 1%, in agreement with phospholipase measurements, while that for the total lipid was 46/54 +/- 1%, similar to the phospholipase measurements. These neutron diffraction results regarding the sarcoplasmic reticulum membrane bilayer were used in model calculations for decomposing the electron-density profile structure (10 A resolution) of isolated sarcoplasmic reticulum previously determined by X-ray diffraction into structures for the separate membrane components. These structure studies showed that the protein profile structure within the membrane lipid bilayer was asymmetric, complementary to the asymmetric lipid structure. Thus, the total phospholipid asymmetry obtained by two independent methods was small but consistent with a complementary asymmetric protein structure, and may be related to the highly vectorial functional properties of the calcium pump ATPase protein in the sarcoplasmic reticulum membrane.  相似文献   

8.
Three specimen preparation techniques for electron microscopy were used to investigate the incorporation of the ATPase polypeptide chains in the membranes of fragmented sarcoplasmic reticulum (SR) obtained from rabbit skeletal muscle. Observations were made of both normal vesicles and vesicles exposed to trypsin, which is known to cleave the ATPase protein and to alter the ultrastructure of the vesicles in predictable ways. Freeze-fracture replicas reveal the typical 90-A particles on the concave (PF) faces with a density of 5,730 +/- 520/mum2. On the other hand both negatively stained and deeply etched preparations display outer projections, which are absent on trypsin-incubated vesicles. The etched specimens afford for the first time top views of the vesicles in the absence of any stain. These views reveal outer projections on the PS surface with a density of 21,000 +/- 3,900/mum2, a value nearly approximating the density of the ATPase polypeptide chains (106,000 mol wt) calculated on the basis of protein and membrane area determinations. On the other hand, this value is three to four times higher than that found for the density of the 90-A particles on the concave fracture faces. Since both outer projections and 90-A particles are identified with the ATPase protein, it is suggested that the ATPase polypeptide chains are amphiphilic molecules, with polar ends protruding individually as outer projections on the surface of the vesicles, and hydrophobic ends appearing as 90-A particles on the concave fracture faces. The discrepancy between the densities of the outer projections and the 90-A particles may be attributed either to variable penetration of the polypeptide chains into the membrane bilayer, or to formation of oligomers containing three or four hydrophobic ends and appearing as single 90-A particles. Each ATPase chain forms a complex with 20-30 phospholipid molecules. The remaining phospholipids (approximately 70% of the total SR phospholipids) account for less than half the membrane volume. It is proposed that the outer leaflet of the SR membrane is prevalently composed of the ATPase lipoprotein complex, and the inner leaflet is mostly a phospholipid monolayer.  相似文献   

9.
The role of the phospholipid environment in modulating the activity of the rat brain synaptic plasma membrane (SPM) Ca2(+)-ATPase was investigated by its reconstitution into different phospholipids. Retention of activity of the solubilized Ca2(+)-ATPase depended on addition of exogenous phospholipids. As the cholate concentration used for solubilization of native SPM increased, a larger excess of exogeneous phospholipids, relative to membrane protein, had to be added to maintain optimal activity. Highest ATP-dependent Ca2+ transport activity was obtained when reconstitution was carried out in calf brain phospholipids (BPLs) followed by soybean phospholipids (SPLs) and the lowest in egg PC; reconstitution at a 40:1 weight ratio of exogenous phospholipids to native SPM protein resulted in ATP-dependent Ca2+ transport of 40.0 +/- 4.16, 23.4 +/- 8.48, and 11.54 +/- 2.31 nmol of Ca2+ (mg of protein)-1 (5 min)-1, respectively. Partial substitution of egg PC with BPLs led to an increase in the activity of the reconstituted Ca2+ pump. The highest ATP-dependent Ca2+ uptake was obtained when ratios of 15:25 or 10:30 egg PC to BPLs were used. Testing the individual phospholipids participating in the BPL mixture showed that addition of PS to egg PC led to a consistent increase in Ca2+ pump activity. Substitution of 50% of the PC with PS resulted in a 3.8-fold higher ATP-dependent Ca2+ uptake than that obtained in egg PC alone. No other phospholipid tested--PE, SM, or PI--had a similar effect. Increasing the proportion of PS within the BPL mixture above its original content led to a gradual decrease in the reconstituted SPM Ca2+ pump activity. Enrichment of asolectin with PS led first to increased Ca2+ pump activity; then, as the proportion of PS increased, Ca2+ transport of the reconstituted pump decreased. An increased proportion of PE, SM, or PI within the BPLs or asolectin, above their original contents, resulted in decreased Ca2+ transport. These results indicate that optimal SPM Ca2+ pump activity requires the combined presence of a critical amount of PC and PS within the reconstituted membrane.  相似文献   

10.
Calmidazolium, a lipophilic cation and putative calmodulin-specific antagonist, inhibited potently the calcium ATPase of sarcoplasmic reticulum (SR) vesicles isolated from skeletal muscle. Based on steady-state measurements of catalytic activity over a range of MgATP, calmidazolium, and SR protein concentrations, the calculated values of the inhibition constant (KI) and binding stoichiometry were 0.06 microM and 770 nmol/mg protein, respectively. SR CaATPase inhibition apparently is not a general property of lipophilic cations since the hydrophobic anion tetraphenylboron inhibited catalysis, whereas its cationic analog, tetraphenylarsonium, did not. Enzyme inhibition by calmidazolium was noncompetitive with respect to the substrates Ca2+ and MgATP. In the presence of other SR CaATPase inhibitors, calmidazolium was competitive with respect to quercetin and noncompetitive with respect to trifluoperazine and propranolol. While calmidazolium inhibited enzyme phosphorylation by MgATP, catalysis was more sensitive to the inhibitor. Binding of calmidazolium to SR membranes produced morphological changes seen by electron microscopy as membrane thickening and loss of resolution of surface detail. Our results show that calmidazolium is a high-affinity, noncompetitive inhibitor of skeletal SR CaATPase activity, and they suggest that this inhibition is based on binding to the membrane phospholipids rather than specific antagonism of enzyme activation by calmodulin.  相似文献   

11.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37 degrees C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids. We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

12.
F R Taylor  J E Cronan 《Biochemistry》1979,18(15):3292-3300
The cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes the methylenation of the unsaturated moieties of phospholipids in a phospholipid bilayer. The methylene donor is S-adenosyl-L-methionine. The enzyme is loosely associated with the inner membrane of the bacterium and binds to and is stabilized by phospholipid vesicles. The enzyme has been purified over 500-fold by flotation with phospholipid vesicles and appears to be a monomeric protein having a molecular weight of about 90 000. The enzyme binds only to vesicles of phospholipids which contain either unsaturated or cyclopropane fatty acid moieties. CFA synthase is active on phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin, the major phospholipids of E. coli, and also has some activity on phosphatidylcholine. The enzyme is equally active on phospholipid vesicles in the ordered or the disordered states of the lipid phase transition. Studies with a reagent that reacts only with the phosphatidylethanolamine molecules of the outer leaflet of a phospholipid bilayer indicate that CFA synthase reacts with phosphatidylethanolamine molecules of both the outer and the inner leaflets of phospholipid vesicles.  相似文献   

13.
We have replaced the lipid associated with a purified calcium transport protein with a series of defined synthetic dioleoyl phospholipids in order to determine the effect of phospholipid headgroup structure on the ATPase activity of the protein. At 37°C the zwitterionic phospholipids (dioleoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) support the highest activity, while a phospholipid with two negative charges (dioleoyl phosphatidic acid) supports an activity which is at least twenty times lower. Dioleoyl phospholipids with a single net negative charge support at intermediate ATPase activity which is not affected by the precise chemical structure of the phospholipid headgroup. The protocol used to determine the phospholipid headgroup specificity of calcium transport protein is novel because it establishes the composition of the lipid in contact with the protein without the need to isolate defined lipid-protein complexes. This allows the lipid specificity to be determined using only very small quantities of test lipids.We also determined the ability of the same phospholipids to support calcium accumulation in reconstituted membranes. Two requirements had to be met. The phospholipid had to support the ATPase activity of the pump protein and it had to form sealed vesicles as determined by electron microscopy. Since a number of phospholipids met those requirements it is clear that in vitro the lipid specificity of the calcium-accumulating system is rather broad.  相似文献   

14.
The reactions of the hydrated electron (eaq-), produced during pulse radiolysis, have been used to study the binding of phosphatidyl choline (PC), phosphatidyl serine (PS), phosphatidyl ethanolamine (PE), and phosphatidyl inositol (PI) vesicles with horse-heart cytochrome C. An interaction could only be detected between cytochrome C and either PS or PI. An apparent equivalence point in the binding was reached for both phospholipids at a molar ratio of phospholipid : protein of 6 : 1. At this point, the reactivity of (eaq-) towards the cytochrome C was very markedly reduced. Indeed, the rate of disappearance of (eaq-) under such conditions was the same as the rate of eaq- disappearance in triply-distilled water. The inclusion of cholesterol at a molar ratio of 1 : 1 within the phospholipid vesicles changed the stoichiometry of the interaction. Evidence that protonated epsilon-amino groups of lysine residues are involved in the interaction is presented. Possible models for the complexes formed are discussed.  相似文献   

15.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are two aminophospholipids whose metabolism is interrelated. Both phospholipids are components of mammalian cell membranes and play important roles in biological processes such as apoptosis and cell signaling. PS is synthesized in mammalian cells by base-exchange reactions in which polar head groups of preexisting phospholipids are replaced by serine. PS synthase activity resides primarily on mitochondria-associated membranes and is encoded by two distinct genes. Studies in mice in which each gene has been individually disrupted are beginning to elucidate the importance of these two synthases for biological functions in intact animals. PE is made in mammalian cells by two completely independent major pathways. In one pathway, PS is converted into PE by the mitochondrial enzyme PS decarboxylase. In addition, PE is made via the CDP-ethanolamine pathway, in which the final reaction occurs on the endoplasmic reticulum and nuclear envelope. The relative importance of these two pathways of PE synthesis has been investigated in knockout mice. Elimination of either pathway is embryonically lethal, despite the normal activity of the other pathway. PE can also be generated from a base-exchange reaction and by the acylation of lyso-PE. Cellular levels of PS and PE are tightly regulated by the implementation of multiple compensatory mechanisms.  相似文献   

16.
The solubilization and delipidation of sarcoplasmic reticulum Ca2+-ATPase by different nonionic detergents were measured from changes in turbidity and recovery of intrinsic fluorescence of reconstituted ATPase in which tryptophan residues had been quenched by replacement of endogenous phospholipids with brominated phospholipids. It was found that incorporation of C12E8 or dodecyl maltoside (DM) at low concentrations in the membrane, resulting in membrane "perturbation" without solubilization, displaced a few of the phospholipids in contact with the protein; perturbation was evidenced by a parallel drop in ATPase activity. As a result of further detergent addition leading to solubilization, the tendency toward delipidation of the immediate environment of the protein was stopped, and recovery of enzyme activity was observed, suggesting reorganization of phospholipid and detergent molecules in the solubilized ternary complex, as compared to the perturbed membrane. After further additions of C12E8 or DM to the already solubilized membrane, the protein again experienced progressive delipidation which was only completed at a detergent concentration about 100-fold higher than that necessary for solubilization. Delipidation was correlated with a decrease in enzyme activity toward a level similar to that observed during perturbation. On the other hand, Tween 80, Tween 20, and Lubrol WX failed to solubilize SR membranes and to induce further ATPase delipidation when added after preliminary SR solubilization by C12E8 or dodecyl maltoside. For Tween 80, this can be related to an inability to solubilize pure lipid membrane; in contrast, Tween 20 and Lubrol WX were able to solubilize liposomes but not efficiently to solubilize SR membranes. In all three cases, insertion of the detergent in SR membranes is, however, demonstrated by perturbation of enzyme activity. Correlation between detergent structure and ability to solubilize and delipidate the ATPase suggests that one parameter impeding ATPase solubilization might be the presence of a bulky detergent polar headgroup, which could not fit close to the protein surface. We also conclude that in the active protein/detergent/lipid ternary complexes, solubilized by C12E8 or dodecyl maltoside, most phospholipids remain closely associated with the ATPase hydrophobic surface as in the membranous form. Binding of only a few detergent molecules on this hydrophobic surface may be sufficient for inhibition of ATPase activity observed at high ATP concentration, both during perturbation and in the completely delipidated, solubilized protein.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
A detailed functional characterization of reconstituted sarcoplasmic reticulum (SR) vesicles with similar lipid content as normal SR was obtained by studies of ATPase activity and calcium transport in transient state, steady state, and equilibrium conditions. For this purpose, enzyme phosphorylation with ATP, hydrolytic activity, calcium transport, phosphorylation with Pi, and ATP synthesis by reversal of the pump were measured, and utilized to demonstrate function and orientation of catalytic sites. The preparations used in these studies displayed the highest activity reported for reconstituted sarcoplasmic reticulum systems. The rates of phosphoenzyme formation from ATP and hydrolysis as well as steady state levels matched the values obtained with normal SR vesicles. Calcium transport and repeated cycles of ATP synthesis by reversal of the pump were also obtained. However, the efficiency of transport and ATP synthesis from a Ca2+ gradient was approximately three times lower than in native vesicles. This deficiency could not be attributed to passive calcium leak from the reconstituted vesicles but, in part, can be explained by the bidirectional alignment of the calcium pump in reconstituted SR. It is suggested that vectorial transport requires a more complex level of protein structure than that for sustaining simple ATPase activity. Time resolution of the phosphorylation reaction by rapid quench methods can be used to estimate the orientation of the calcium pump in the membrane. Such studies indicate that the calcium pump protein is largely bidirectionally oriented in reconstituted SR vesicles.  相似文献   

18.
Lysozyme is a globular protein which is known to bind to negatively charged phospholipid vesicles. In order to study the relationship between binding of the protein and the subsequent destabilization of the phospholipid vesicles a set of experiments was performed using phospholipid monolayers and vesicles. Using microelectrophoresis the binding of lysozyme to phospholipid vesicles made of PS was determined. At low ionic strength and mild acidic pH of the solution lysozyme reduced the magnitude of the negative zeta potential of PS vesicles at lower concentrations compared to neutral pH and high ionic strength. In contrast, the bound fraction of lysozyme to PS vesicles was nearly constant at acidic and neutral pH. At low pH, the binding of lysozyme was accompanied by a strong aggregation of the vesicles. Lysozyme binding to PS vesicles is accompanied by its penetration into the PL monolayer. This was measured by surface tension and film balance measurements at low pH and low ionic strength. The interaction of lysozyme with negatively charged vesicles lead to a decrease of the vesicle surface hydration as measured by the shift of the emission peak of the fluorescent probe DPE. The binding of bis-ANS increased at low pH after addition of lysozyme to the vesicles. This indicates that more hydrophobic patches of the lysozyme-PS complex are exposed at low pH. At low pH the binding process of lysozyme to PS vesicles was followed by an extensive intermixing of phospholipids between the aggregated vesicles, accompanied by a massive leakage of the aqueous content of vesicles.  相似文献   

19.
We have used assays of lipid probe mixing, contents mixing and contents leakage to monitor the divalent cation-mediated interactions between lipid vesicles containing phosphatidylserine (PS) as a minority component together with mixtures of phosphatidylethanolamine (PE), phosphatidylcholine (PC) or sphingomyelin, and cholesterol in varying proportions. The initial rates of calcium- and magnesium-induced lipid probe quenching between vesicles, which reflect primarily the rates of vesicle aggregation, are strongly reduced as progressively higher proportions of PC or sphingomyelin are incorporated into PE/PS vesicles. The initial rates of divalent cation-induced contents mixing and contents leakage for PE/PS vesicles are also strongly reduced when choline phospholipids are incorporated into the vesicles in even low molar proportions. Sphingomyelin has a more potent inhibitory effect on these processes than does PC at an equal level in the vesicle membranes. The inclusion of cholesterol in these vesicles, at levels up to 1:2 moles sterol/mole phospholipid, has little effect on the rates of calcium- or magnesium-induced vesicle aggregation. However, cholesterol significantly enhances the initial rates of vesicle contents mixing and contents leakage in the presence of divalent cations when the vesicles contain choline as well as amino phospholipids. This effect is substantial only when the level of cholesterol exceeds the level of choline phospholipids in the vesicles. These results may have significance for the fusion of certain cellular membranes in mammalian cells, whose cytoplasmic faces have lipid compositions very similar to those of the vesicles examined in this study.  相似文献   

20.
The phospholipid and fatty acid composition and role of phospholipids in enzyme and transport function of gastric (H++K+)-ATPase vesicles was studied using phospholipase A2 (bee venom). The composition (%) was phosphatidylcholine (PC) 33%; sphingomyelin (sph) 25%; phosphatidylethanolamine (PE) 22%; phosphatidylserine (PS) 11%; and phosphatidylinositol (PI) 8%. The fatty acid composition showed a high degree of unsaturation. In both fresh and lyophilized preparations, even with prolonged incubation, only 50% of phospholipids were hydrolyzed, but the amount of PE and PS disappearing was increased following lyophilization. There was a marked decrease in K+-ATPase activity (75%) but essentially no loss of the associated K+ p-nitrophenyl phosphatase was found. ATPase activity could be largely restored by various phospholipids (PE > PC > PS). There was also an increase in Mg2+-ATPase activity, partially reversed in fresh preparations by the addition of phospholipids (PE > PS > PC). Proton transport activity of the preparation was rapidly inhibited, initially due to a large increase in the HC1 permeability of the preparation. Associated with these enzymatic and functional changes, the ATP-induced conformational changes, as indicated by circular dichroism spectra were inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号