首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pseudopterosins are a family of diterpene pentosides isolated from the marine octocoral, Pseudopterogorgia elisabethae. These compounds possess non-steroidal anti-inflammatory and analgesic properties which have been shown to be greater than the industry standard, indomethacin. In our investigations, we are interested in examining the biosynthesis and enzymology of these compounds for the development of a biotechnological production method. We have isolated the pseudopterosin diterpene cyclase product, elisabethatriene, using a radioactivity-guided isolation. This has provided us with an assay to isolate the diterpene cyclase enzyme. The amino acid sequence of the purified diterpene cyclase will facilitate cloning and expression of the gene in a suitable host. In addition, we have identified over 25 novel diterpenes from one of our collections of P. elisabethae. Several of these compounds appear to be involved in pseudopterosin biosynthesis and are presently being evaluated as potential intermediates. These compounds have also been evaluated for anti-inflammatory activity and some possess greater activity than that of the pseudopterosins. We therefore propose a production method utilizing a combination of recombinant enzyme technology and synthetic methods/biocatalysis in order to produce one or more anti-inflammatory metabolites in P. elisabethae.  相似文献   

2.
The Bahamian octocoral Pseudopterogorgia elisabethae is the source of pseudopterosins, diterpene glycosides with potent anti-inflammatory activity. The first committed step in pseudopterosin biosynthesis comprises the cyclisation of the universal diterpene precursor geranylgeranyl diphosphate to elisabethatriene. This reaction is catalysed by elisabethatriene synthase, which was purified to homogeneity from a crude coral extract. This represents the first purification to apparent homogeneity of a terpene cyclase from any marine source. The reaction kinetics of elisabethatriene synthase was examined using a steady state approach with (3)H-labelled isoprenyldiphosphates varying in carbon chain length (C(10), C(15), C(20)). For the reaction of elisabethatriene synthase with its natural substrate geranylgeranyl diphosphate, values of K(m) (2.3 x 10(-6) M), V(max) (3.4 x 10(4) nM elisabethatriene x s(-1)) and the specificity constant (k(cat)/K(m)= 1.8 x 10(-10) M(-1) x s(-1)) were comparable with diterpene cyclases from terrestrial plants. Elisabethatriene synthase also catalysed the conversion of C(15) and C(10) isoprenyldiphosphate analogues to monoterpene and sesquiterpene olefins, respectively. Kinetic parameters indicated that substrate specificity and K(m) of elisabethatriene synthase decreased with decreasing isoprenoid carbon chain length. Furthermore, GC-MS analysis showed increased product diversity with decreasing isoprenoid carbon chain length.  相似文献   

3.
The pseudopterosins are a family of diterpene glycosides isolated from the gorgonian coral Pseudopterogorgia elisabethae. These metabolites exhibit potent anti-inflammatory activity, and this review describes our efforts to elucidate their biosynthetic origin. A radioactivity-guided isolation was used to identify the terpene cyclase product. In addition, a detailed NMR-guided search for potential biosynthetic intermediates identified metabolites which were tested by incubating 3H-labeled analogues with a cell-free extract of the coral. All labeled metabolites were generated biosynthetically, and radiochemical purity was established by a combination of HPLC purification and derivatization. In summary, pseudopterosins are produced by a cyclization of geranylgeranyl diphosphate to elisabethatriene, aromatization to erogorgiaene, two successive oxidations to 7,8-dihydroxyerogorgiaene and a glycosylation to afford a seco-pseudopterosin as a key intermediate. A dehydrogenation leads to amphilectosins which undergo ring closures to yield the pseudopterosins.  相似文献   

4.
The monoterpene cyclase, gamma-terpinene synthase, from Thymus vulgaris (thyme) leaves was purified to apparent homogeneity by isoelectric focusing and dye-ligand, anion-exchange, hydrophobic interaction, and gel permeation chromatography. The enzyme has a native molecular weight of 96,000 as determined by gel permeation chromatography, and exhibited a specific activity of 538 nmol/h.mg protein (turnover number of approximately 0.01/s). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed the enzyme to be composed of two apparently identical subunits of Mr approximately 55,000. The protein was very hydrophobic, and possessed a pI value of 4.85 as determined by isoelectric focusing. Maximum activity was observed at pH 6.8 in the presence of 20 mM Mg2+; 5 mM Mn2+ could support catalysis, albeit at a much lower rate. The Km value for the substrate, geranyl pyrophosphate, was 2.6 microM. Cyclase activity was inhibited by cysteine- and histidine-directed reagents. Purified gamma-terpinene synthase also possessed the ability to cyclize geranyl pyrophosphate to small amounts of alpha-thujene and to lesser quantities of myrcene, alpha-terpinene, limonene, linalool, terpinen-4-ol, and alpha-terpineol, all of which appear to be coproducts of the reaction sequence leading to gamma-terpinene. In general properties, the gamma-terpinene synthase from thyme leaves resembles other monoterpene cyclases as well as sesquiterpene and diterpene cyclases.  相似文献   

5.
The protein converting dimethylallylpyrophosphate (DMAPP) into isoprene in vitrowas isolated and purified 3000-fold from leaves of berry-bearing poplar (Populus deltoidesMarsh.). As the enzyme was purified, its specific activity increased and at the final stage reached 266 nmol/(min mg protein). The enzyme was eluted by anion-exchange chromatography in a 120–170 mM NaCl gradient and by chromatography on the hydroxyapatite column in 170 mM sodium phosphate. The active molecular weight of the protein determined by gel filtration was 100–110 kD. As the enzyme was purified, the K Mvalue increased from 2 to 9 mM. A parallelism isoprene emission from DMAPP and an increase in the specific activity of the enzyme as it was purified proved that the enzyme catalyzed isoprene emission.  相似文献   

6.
刘莉  胡昌华 《微生物学报》2010,50(11):1438-1445
二萜类化合物广泛存在于植物和真菌中,是一类具有重要商业价值的天然产物。二萜环化酶作为催化牻牛儿牻牛儿焦磷酸(geranylgeranyl diphosphate,GGPP)形成二萜的关键生物合成酶,在不同生物中的特异性决定了二萜化合物的结构多样性和生物活性多样性。对不同物种中二萜环化酶基因的分离、克隆和表达特征的分析有利于二萜类化合物的生物合成及调控研究。相比植物,真菌二萜化合物和二萜环化酶的研究刚刚起步。本文综述了近几年真菌二萜环化酶的研究进展,重点叙述了真菌二萜化合物的生物合成途径、二萜环化酶的特征及其克隆策略,并对二萜环化酶的代谢工程作了简要概述。  相似文献   

7.
Bordetella pertussis, the bacterium responsible for whooping cough, releases a soluble, calmodulin-sensitive adenylate cyclase into its culture medium. B. pertussis mutants deficient in this enzyme are avirulent, indicating that the adenylate cyclase contributes to the pathogenesis of the disease. It has been proposed that B. pertussis adenylate cyclase may enter animal cells and increase intracellular adenosine cyclic 3',5'-phosphate (cAMP) levels. We have purified the enzyme extensively from culture medium using anion-exchange chromatography in the presence and absence of calmodulin and gel filtration chromatography. The enzyme was purified 1600-fold to a specific activity of 608 mumol of cAMP min-1 mg-1 and was free of islet activating protein. The molecular weight of the enzyme was 43 400 in the absence of calmodulin and 54 200 in the presence of calmodulin. The Km of the bacterial enzyme for adenosine 5'-triphosphate was 2.0 mM, whereas the Km of the calmodulin-sensitive adenylate cyclase from bovine brain was 0.07 mM. Although the enzyme was not purified to homogeneity, its turnover number of 27 000 min-1 is the highest documented for any adenylate cyclase preparation.  相似文献   

8.
The p-menthane monoterpenes of the Mentha species are biosynthesized from geranyl pyrophosphate via the monocyclic olefin 4S-limonene. A monoterpene cyclase was isolated from both Mentha x piperita (peppermint) and Mentha spicata (spearmint) that catalyzes the cyclization of geranyl pyrophosphate to 4S-limonene. This enzyme, 4S-limonene synthase, was purified to apparent homogeneity by dye ligand, anion exchange, and hydrophobic interaction chromatography. Since the monoterpenes of Mentha are synthesized and secreted in modified epidermal hairs called glandular trichomes, an extract of isolated glandular trichome cells was used as the source of this enzyme. A combination of gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that purified 4S-limonene synthase had a native molecular weight of 56,000 and was monomeric. The principal product of the enzyme was enantiomerically pure (-)-4S-limonene, and a catalytic constant of 0.3/s was determined. The basic properties of 4S-limonene synthase from both M. x piperita and M. spicata are identical and, in general, are similar to those of other monoterpene, sesquiterpene, and diterpene cyclases isolated from microorganisms and higher plants.  相似文献   

9.
A novel enzyme, alpha-neoagarooligosaccharide hydrolase (EC 3.2.1.-), which hydrolyzes the alpha-1,3 linkage of neoagarooligosaccharides to yield agaropentaose (O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro-alpha-L-galactopyranosyl (1-->3)-D-galactose], agarotriose [O-beta-D-galactopyranosyl(1-->4)-O-3,6-anhydro- alpha-L-galactopyranosyl (1-->3)-D-galactose], agarobiose [O-beta-D-galactopyranosyl(1-->4)-3,6-anhydro-L-galactose], 3,6-anhydro-L-galactose, and D-galactose was isolated from the marine bacterium Vibrio sp. strain JT0107 and characterized. This enzyme was purified 383-fold from cultured cells by using a combination of ammonium sulfate precipitation, successive anion-exchange column chromatography, gel filtration, and hydroxyapatite chromatography, gel filtration, and hydroxyapatite chromatography. The purified protein gave a single band (M(r), 42,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Estimation of the M(r) by the gel filtration method gave a value of 84,000, indicating that the enzyme is dimeric. Amino acid sequence analysis revealed it to have a single N-terminal sequence that has no sequence homology to any other known agarases. The optimum temperature and pH were 30 degrees C and 7.7, respectively. The Km and maximum rate of metabolism for neoagarobiose were 5.37 mM and 92 U/mg of protein, respectively.  相似文献   

10.
The aim of this study was to introduce a simple, reproducible, and less expensive method for isolation of alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin from cow's milk while retaining their antigenicity. Whey (lactoserum) was obtained by isolating casein from defatted milk using hydrochloric acid. Globulins were then precipitated from whey by half-saturated ammonium sulfate and beta-lactoglobulin was purified further using Sephadex G-50 gel filtration. The proteins in the supernatant were also fractionated using diethylaminoethyl cellulose chromatography in which beta-lactoglobulin was separated from alpha-lactalbumin and bovine serum albumin. The latter two proteins that co-eluted in anion-exchange chromatography were then gently isolated from each other by Sephadex G-50 gel filtration. Pure beta-lactoglobulin was also obtained by anion-exchange chromatography of the ammonium sulfate-precipitated globulins. Using enzyme-linked immunosorbent assay (ELISA), Western blotting, and ELISA inhibition assay, antigenicity of the purified proteins was evaluated. Our results showed high purity and well-preserved antigenicity of alpha-lactalbumin, beta-lactoglobulin, and bovine serum albumin thus purified.  相似文献   

11.
A cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac) synthetase was found in a crude extract prepared from Photobacterium leiognathi JT-SHIZ-145, a marine bacterium that also produces a β-galactoside α2,6-sialyltransferase. The CMP-Neu5Ac synthetase was purified from the crude extract of the cells by a combination of anion-exchange and gel filtration column chromatography. The purified enzyme migrated as a single band (60 kDa) on sodium dodecylsulfate-polyacrylamide gel electrophoresis. The activity of the enzyme was maximal at 35 °C at pH 9.0, and the synthetase required Mg(2+) for activity. Although these properties are similar to those of other CMP-Neu5Ac synthetases isolated from bacteria, this synthetase produced not only CMP-Neu5Ac from cytidine triphosphate and Neu5Ac, but also CMP-N-glycolylneuraminic acid from cytidine triphosphate and N-glycolylneuraminic acid, unlike CMP-Neu5Ac synthetase purified from Escherichia coli.  相似文献   

12.
1. A proteinase has been isolated from the ovarian fluid of the lumpsucker (Cyclopterus lumpus). 2. The enzyme was purified essentially to homogeneity by a one step purification procedure using anion-exchange chromatography. 3. The mol. wt of the denatured enzyme is approximately 20,000 as judged by SDS-polyacrylamide gel electrophoresis. 4. The enzyme is inhibited by serine-proteinase inhibitors and acts in the manner of a trypsin-type proteinase both with respect to specific peptide substrates and enzyme inhibitors. 5. The lumpsucker proteinase exhibits low general proteolytic activity but acts effectively on the specific chromogenic peptide substrates.  相似文献   

13.
The ferric enterobactin receptor protein, FepA, was isolated and purified from the outer membranes of a genetically transformed strain of Escherichia coli (UT5600/pBB2) using anion-exchange chromatography, chromatofocusing and gel filtration. The purified protein was found to crystallize from 25 mM sodium phosphate buffer in the presence of 0.8% beta-D-octylglucoside under a range of conditions. The protein formed mostly small rods and needle-shaped crystals in the hanging drop method.  相似文献   

14.
Soluble guanylate cyclase from rat lung exists as a heterodimer   总被引:8,自引:0,他引:8  
The soluble form of guanylate cyclase (EC 4.6.1.2) from rat lung has been purified to homogeneity by a one-step immunoaffinity chromatographic procedure. The purified soluble guanylate cyclase has specific activities of 432 and 49.1 nmol of cyclic GMP formed per min/mg protein with manganese and magnesium ions as a cofactor, respectively. This represents a purification of approximately 2,000-fold with a 50% recovery. The native enzyme has a molecular weight of 150,000 and a Stokes radius of 4.8 nm as determined on Spherogel TSK-G3000SW gel permeation chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis results in two protein-staining bands with molecular weights of 82,000 and 70,000. The purified soluble guanylate cyclase was also subjected to native polyacrylamide gel electrophoresis, isoelectric focusing electrophoresis, ion exchange chromatography, and GTP-agarose affinity chromatography. These additional purification procedures confirmed the presence of a single protein peak coincident with enzyme activity. The two subunits separated on sodium dodecyl sulfate-polyacrylamide gel electrophoresis were shown to have different primary structures by immunoblotting with monoclonal and polyclonal antibodies prepared against purified soluble guanylate cyclase and by peptide mapping with papain or Staphylococcus aureus V8 protease treatment. These data demonstrate that soluble guanylate cyclase purified from rat lung is a heterodimer composed of 82,000- and 70,000-dalton subunits with different primary structures.  相似文献   

15.
Soluble guanylyl cyclase was purified from bovine lung by an immunoaffinity chromatographic method using IgG fractions of antisera against a synthetic peptide of the C-terminus of the 70-kDa subunit of the enzyme. After anion-exchange chromatography, the enzyme was bound to an immunoaffinity column and was eluted with the synthetic peptide. This method allowed the convenient isolation of 2 mg of apparently homogeneous enzyme from 40 g cytosolic proteins. The enzyme had an apparent molecular mass of about 150 kDa and consisted of two subunits (70 kDa and 73 kDa) as determined by gel permeation fast protein liquid chromatography and SDS/PAGE. The basal activities determined in the presence of Mg2+ and Mn2+ were 10-20 nmol.min-1.mg-1 and 80-100 nmol.min-1.mg-1, respectively. The enzyme exhibited an ultraviolet-visible absorption spectrum typical for hemoproteins, with a Soret band at 430 nm. The purified enzyme was stimulated by NO-containing compounds. Maximal enzyme activities measured in the presence of sodium nitroprusside were 1.2-2.4 mumol.min-1.mg-1 (half-maximal effect of sodium nitroprusside at 1.3-1.9 microM) and 0.9-1.8 mumol.min-1.mg-1 (half-maximal effect at 0.28-0.41 microM sodium nitroprusside) in the presence of Mg2+ and Mn2+, respectively. The method developed for the large-scale purification of soluble guanylyl cyclase by immunoaffinity chromatography, using synthetic peptides for the elution of the enzyme, appears to be superior to previously described methods. As antibodies against synthetic peptides corresponding to deduced amino acid sequences of the respective protein are easily obtained, the described method may be suitable for a convenient large-scale purification of various proteins.  相似文献   

16.
Chitinase (EC 3.2.1.14) was isolated from the culture supernatant of a marine bacterium, Alteromonas sp. strain O-7. The enzyme (Chi-A) was purified by anion-exchange chromatography (DEAE-Toyopearl 650 M) and gel filtration (Sephadex G-100). The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular size and pI of Chi-A were 70 kDa and 3.9, respectively. The optimum pH and temperature of Chi-A were 8.0 and 50 degrees C, respectively. Chi-A was stable in the range of pH 5-10 up to 40 degrees C. Among the main cations, such as Na+, K+, Mg2+, and Ca2+, contained in seawater, Mg2+ stimulated Chi-A activity. N-Bromosuccinimide and 2-hydroxy-5-nitrobenzyl bromide inhibited Chi-A activity. The amino-terminal 27 amino acid residues of Chi-A were sequenced. This enzyme showed sequence homology with chitinases from terrestrial bacteria such as Serratia marcescens QMB1466 and Bacillus circulans WL-12.  相似文献   

17.
The major wound-inducible monoterpene synthase (cyclase) of grand fir (Abies grandis) stems transforms geranyl pyrophosphate to both (-)-alpha-pinene (40%) and (-)-beta-pinene (60%). The enzyme was purified to apparent homogeneity by anion-exchange and hydrophobic interaction chromatography, coupled to discontinuous native polyacrylamide gel electrophoresis at neutral pH and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (also at neutral pH) followed by renaturation in 1% Tween 20 (polyoxyethylenesorbitan monolaurate). The renatured enzyme produced a mixture of isomeric pinenes from geranyl pyrophosphate identical to that generated by the native form. The protein exhibited a molecular weight of 63,000 by gel permeation chromatography and of 62,000 by denaturing gel electrophoresis, indicating that the monomer is active. The enzyme required Mn2+ (Km = 30 microM) for activity, exhibited a Km value of 6 microM for the substrate geranyl pyrophosphate, showed a pH optimum at 7.8 and temperature optimum at 42 degrees C, and was inhibited by pyrophosphate (I50 = 0.17 mM), orthophosphate (I50 = 51 mM), and alpha-pinene, as well as by the histidine-directed reagent diethylpyrocarbonate (I50 = 0.64 mM) and the cysteine-directed reagent p-hydroxymercuribenzoate (I50 = 1.9 microM). Although similar in many respects to constitutive monoterpene cyclases of herbaceous species, this inducible cyclase, the first enzyme of this type to be purified to homogeneity from a conifer, is distinguished by the relatively high pH optimum, and the strict specificity and high affinity for the divalent metal ion cofactor.  相似文献   

18.
Guanylate cyclase was purified from the soluble fraction of rat lung using a modification of procedures published previously. The purified enzyme exhibited specific activities, at pH 7.6, of 219-438 nmoles/mg protein/min and 34-60 nmoles/mg protein/min with Mn2+ and Mg2+ as cation cofactors, respectively. The specific activity changed as a function of the protein concentration due to a change in Vmax with no alteration of the Km for GTP. The enzyme migrated as a single band coincident wih guanylate cyclase activity on nondenaturing polyacrylamide and isoelectric focusing gels (isoelectric point = 5.9). Purified guanylate cyclase had an apparent molecular weight of 150,000 daltons as determined by gel filtration chromatography and polyacrylamide gel electrophoresis. Electrophoresis in the presence of sodium dodecyl sulfate revealed a single subunit of 72,000 daltons, suggesting that the enzyme is a dimer of an identical subunit. The purified enzyme could be activated by nitric oxide, indicating that this compound interacts directly with the enzyme.  相似文献   

19.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ that is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The activity of the enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that cADPR may be a general messenger for Ca2+ mobilization in cells. An aqueous soluble enzyme, thought to be an NADase, has been purified recently from the ovotestis of Aplysia californica (Hellmich and Strumwasser, 1991). This paper shows that the Aplysia enzyme catalyzes the conversion of NAD+ to cADPR and nicotinamide. The Aplysia enzyme was purified by fractionating the soluble extract of Aplysia ovotestis on a Spectra/gel CM column. The purified enzyme appeared as a single band of approximately 29,000 Da on SDS-PAGE but could be further separated into multiple peaks by high-resolution, cation-exchange chromatography. All of the protein peaks had enzymatic activity, indicating that the enzyme had multiple forms differing by charge. Analysis of the reaction products of the enzyme by anion-exchange high-pressure liquid chromatography (HPLC) indicated no ADP-ribose was produced; instead, each mole of NAD+ was converted to equimolar of cADPR and nicotinamide. The identification of the product as cADPR was further substantiated by proton NMR and also by its Ca(2+)-mobilizing activity. Addition of the product to sea urchin egg homogenates induced Ca2+ release and desensitized the homogenate to authentic cADPR but not to IP3. Microinjection of the product into sea urchin eggs elicited Ca2+ transients as well as the cortical exocytosis reaction. Therefore, by the criteria of HPLC, NMR, and calcium-mobilizing activity, the product was identical to cADPR. To distinguish the Aplysia enzyme from the conventional NADases that produce ADP-ribose, we propose to name it ADP-ribosyl cyclase.  相似文献   

20.
The soluble form of guanylate cyclase from rat lung has been purified approximately 23,000-fold to homogeneity by isoelectric precipitation, GTP-Sepharose chromatography, and preparative gel electrophoresis. A single protein-staining band is observed after analytical gel electrophoresis on either 4 or 7.5% polyacrylamide gels. The final purified enzyme has a specific activity of about 700 nmol of cyclic GMP formed/min/mg of protein at 37 degrees C in the presence of 4.8 mM MnCl2 and 100 micrometer GTP. Bovine serum albumin appears to slightly increase guanylate cyclase activity, but mainly stabilizes the purified enzyme; in its presence, specific activities in excess of 1 mumol of cyclic GMP formed/min/mg of enzyme protein can be obtained. When Mg2+ or Ca2+ are substituted for Mn2+, specific activities decrease to approximately 21 and 40 nmol of cyclic GMP formed/min/mg of protein, respectively. The apparent Michaelis constant for MnGTP in the presence of 4.8 mM MnCl2 is 10.2 micrometer. Kinetic patterns on double reciprocal plots as a function of free Mn2+ are concave downward. The native enzyme has a molecular weight of approximately 151,000 as determined on Sephacryl S-200; sodium dodecyl sulfate-polyacrylamide gel electrophoresis results in two protein-staining bands with approximate molecular weights of 79,400 and 74,000. Thus, it appears that the soluble form of guanylate cyclase from rat lung exists as a dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号