首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
L Pardo  N Pastor    H Weinstein 《Biophysical journal》1998,75(5):2411-2421
We report the results of an energy-based exploration of the components of selective recognition of the TATA box-binding protein (TBP) to a TATA box sequence that includes 1) the interaction between the hydrophobic Leu, Pro, and Phe residues of TBP with the TA, AT, AA, TT, and CG steps, by ab initio quantum mechanical calculations; and 2) the free energy penalty, calculated from molecular dynamics/potential of mean force simulations, for the conformational transition from A-DNA and B-DNA into the TA-DNA form of DNA observed in a complex with TBP. The GTAT, GATT, GAAT, and GTTT tetramers were explored. The results show that 1) the discrimination of TA, AT, AA, TT, or CG steps by TBP cannot rest on their interaction with the inserting Phe side chains; 2) the steric clash between the bulky and hydrophobic Pro and Leu residues and the protruding -NH2 group of guanine is responsible for the observed selectivity against any Gua-containing basepair; 3) the Pro and Leu residues cannot selectively discriminate among TA, AT, AA, or TT steps; and 4) the calculated energy required to achieve the TA-DNA conformation of DNA that is observed in the complex with TBP appears to be a key determinant for the observed selectivity against the AT, AA, and TT steps. The simulations also indicate that only the TA step can form a very efficient interbase hydrogen bond network in the TA-DNA conformation. Such an energetically stabilizing network is not achievable in the AA and TT steps. While it is viable in the AT step, structural constraints render the hydrogen bonding network energetically ineffective there.  相似文献   

10.
Recombinant full-length Saccharomyces cerevisiae TATA binding protein (TBP) and its isolated C-terminal conserved core domain (TBPc) were prepared with measured high specific DNA-binding activities. Direct, quantitative comparison of TATA box binding by TBP and TBPc reveals greater affinity by TBPc for either of two high-affinity sequences at several different experimental conditions. TBPc associates more rapidly than TBP to TATA box bearing DNA and dissociates more slowly. The structural origins of the thermodynamic and kinetic effects of the N-terminal domain on DNA binding by TBP were explored in comparative studies of TBPc and TBP by "protein footprinting" with hydroxyl radical (*OH) side chain oxidation. Some residues within TBPc and the C-terminal domain of TBP are comparably protected by DNA, consistent with solvent accessibility changes calculated from core domain crystal structures. In contrast, the reactivity of some residues located on the top surface and the DNA-binding saddle of the C-terminal domain differs between TBP and TBPc in both the presence and absence of bound DNA; these results are not predicted from the crystal structures. A strikingly different pattern of side chain oxidation is observed for TBP when a nonionic detergent is present. Taken together, these results are consistent with the N-terminal domain actively modulating TATA box binding by TBP and nonionic detergent modulating the interdomain interaction.  相似文献   

11.
12.
13.
14.
15.
16.
Khrapunov S  Brenowitz M 《Biochemistry》2007,46(16):4876-4887
The localization of a single tryptophan to the N-terminal domain and six tyrosines to the C-terminal domain of TBP allows intrinsic fluorescence to separately report on the structures and dynamics of the full-length TATA binding protein (TBP) of Saccharomyces cerevisiae and its C-terminal DNA binding domain (TBPc) as a function of self-association and DNA binding. TBPc is more compact than the C-terminal domain within the full-length protein. Quenching of the intrinsic fluorescence by DNA and external dynamic quenchers shows that the observed tyrosine fluorescence is due to the four residues surrounding the "DNA binding saddle" of the C-terminal domain. TBP's N-terminal domain unfolds and changes its position relative to the C-terminal domain upon DNA binding. It partially shields the DNA binding saddle in octameric TBP, shifting upon dissociation to monomers to expose the saddle to DNA. Structure-energetic correlations were obtained by comparing the contribution that electrostatic interactions make to DNA binding by TBP and TBPc; DNA binding by TBPc is more hydrophobic than that by TBP, suggesting that the N-terminal domain either interacts with bound DNA directly or screens a part of the C-terminal domain, diminishing its electronegativity. The competition between divalent cations, K+, and DNA is not straightforward. Divalent cations strengthen binding of TBP to DNA and do so more strongly for TBPc. We suggest that divalent cations affect the structure of the bound DNA perhaps by stabilizing its distorted conformation in complexes with TBPc and TBP and that the N-terminal domain mimics the effects of divalent cations. These data support an autoinhibitory mechanism in which competition between the N-terminal domain and DNA for the saddle diminishes the DNA binding affinity of the full-length protein.  相似文献   

17.
18.
Kahn JD 《Biochemistry》2000,39(13):3520-3524
DNA ring closure experiments on short restriction fragments ( approximately 160 bp) bound by the TATA box binding protein (TBP) have demonstrated the formation of negative topoisomers, consistent with crystallographically observed TBP-induced DNA untwisting but in contrast to most previous results on topological effects in plasmid DNA. The difference may be due to the high free energy cost of substantial writhe in minicircles. A speculative mechanism for the loss of TBP-induced writhe suggests that TBP is capable of inducing DeltaTw between 0 and -0.3 in minicircles, via loss of out-of-plane bending upon retraction of intercalating Phe stirrups, and that TBP can thus act as a "supercoil shock absorber". The proposed biological relevance of these observations is that they may model the behavior of DNA in constrained chromatin environments. Irrespective of the detailed mechanism of TBP-induced supercoiling, its existence suggests that chromatin remodeling and enhanced TBP binding are thermodynamically linked. Remodeling ATPases or histone acetylases release some of the negative supercoiling previously restrained by the nucleosome. When TBP takes up the supercoiling, its binding should be enhanced transiently until the unrestrained supercoiling is removed by diffusion or topoisomerases. The effect is predicted to be independent of local remodeling-induced changes in TATA box accessibility.  相似文献   

19.
20.
The binding of nuclear non-histone protein to DNA   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号