首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pH-sensitive property of the single-wall carbon nanotube modified electrode based on the electroactive group on the single-wall carbon nanotube was explored by differential pulse voltammetry technique. In pH range 1-13 investigated in Britton-Robinson (B-R) buffer, the anodic peak shifted negatively along with the increase of pH exhibiting a reversible Nernstian response. Experiments were carried out to investigate the response of the single-wall carbon nanotube (SWNT) modified electrode to analytes associated with pH change. The response behavior of the modified electrode to ammonia was studied as an example. The potential response could reach equilibrium within 5 min. The modified electrode had good operational stability. Voltammetric urease and acetylcholinesterase biosensors were constructed by immobilizing the enzymes with sol-gel hybrid material. The maximum potential shift could reach 0.130 and 0.220 V for urea and acetylthiocholine, respectively. The methods for preparing sensor and biosensor were simple and reproducible and the range of analytes could be extended to substrates of other hydrolyases and esterases. This broadened the biosensor application of carbon nanotube in electrochemical area.  相似文献   

2.
An amperometric biosensor was constructed for analysis of human salivary phosphate without sample pretreatment. The biosensor was constructed by immobilizing pyruvate oxidase (PyOD) on a screen-printed electrode. The presence of phosphate in the sample causes the enzymatic generation of hydrogen peroxide (H(2)O(2)), which was monitored by a potentiostat and was in proportion to the concentration of human salivary phosphate. The sensor shows response within 2s after the addition of standard solution or sample and has a short recovery time (2 min). The time required for one measurement using this phosphate biosensor was 4 min, which was faster than the time required using a commercial phosphate testing kit (10 min). The sensor has a linear range from 7.5 to 625 microM phosphate with a detection limit of 3.6 microM. A total of 50 salivary samples were collected for the determination of phosphate. A good level of agreement (R(2)=0.9646) was found between a commercial phosphate testing kit and the phosphate sensor. This sensor maintained a high working stability (>85%) after 12h operation and required only a simple operation procedure. The amperometric biosensor using PyOD is a simple and accurate tool for rapid determinations of human salivary phosphate, and it explores the application of biosensors in oral and dental research and diagnosis.  相似文献   

3.
Novel, thick-film biosensors have been developed for the determination of l-glutamate in foodstuffs. The sensors were prepared by immobilization of l-glutamate oxidase by using polycarbamylsulfonate-hydrogel on a thick-film sensor. l-Glutamate oxidases obtained from Streptomyces sp. with different degree of purification were compared with their characteristic response to l-glutamate at different conditions and for their specificity, inhibition, and storage properties. These sensors were applied to determine monosodium glutamate in soy sauce samples and show good correlation with colorimetric method.  相似文献   

4.
A compact portable chemiluminescent biosensor for simple, rapid, and ultrasensitive on-site quantification of fumonisins (fumonisin B1+fumonisin B2) in maize has been developed. The biosensor integrates a competitive lateral flow immunoassay based on enzyme-catalyzed chemiluminescence detection and a highly sensitive portable charge-coupled device (CCD) camera, employed in a contact imaging configuration. The use of chemiluminescence detection allowed accurate and objective analyte quantification, rather than qualitative or semi-quantitative information usually obtained employing conventional lateral flow immunoassays based on colloidal gold labeling. A limit of detection of 2.5 μgL(-1) for fumonisins was achieved, with an analytical working range of 2.5-500 μgL(-1) (corresponding to 25-5000 μgkg(-1) in maize flour samples, according to the extraction procedure). Total assay time was 25 min, including sample preparation. A simple and convenient extraction procedure, performed by suspending the sample in a buffered solution and rapidly heating to eliminate endogenous peroxidase enzyme activity was employed for maize flour samples analysis, obtaining recoveries in the range 90-115%, when compared with LC-MS/MS analysis. The chemiluminescence immunochromatography-based biosensor is a rapid, low cost portable test suitable for point-of-use applications.  相似文献   

5.
Novel cyanobacterial biosensor for detection of herbicides   总被引:4,自引:0,他引:4  
The aim of this work was to generate a cyanobacterial biosensor that could be used to detect herbicides and other environmental pollutants. A representative freshwater cyanobacterium, Synechocystis sp. strain PCC6803, was chromosomally marked with the luciferase gene luc (from the firefly Photinus pyralis) to create a novel bioluminescent cyanobacterial strain. Successful expression of the luc gene during growth of Synechocystis sp. strain PCC6803 cultures was characterized by measuring optical density and bioluminescence. Bioluminescence was optimized with regard to uptake of the luciferase substrate, luciferin, and the physiology of the cyanobacterium. Bioassays demonstrated that a novel luminescent cyanobacterial biosensor has been developed which responded to a range of compounds including different herbicide types and other toxins. This biosensor is expected to provide new opportunities for the rapid screening of environmental samples or for the investigation of potential environmental damage.  相似文献   

6.
A simple modification to an electronic O2 analyser is described which enables accurate determination of O2 in small gas samples. The response to O2 concentration is linear over the range 0–21% by volume and as little as 0.07 μl of O2 can be detected. Analysis of a 25 μl sample takes 25 s.  相似文献   

7.
The voltammetric assay of Helicobacter pylori DNA was investigated using a bismuth-immobilized carbon nanotube electrode (BCNE). The analytical cyclic voltammetry (CV) peak potential was obtained at a 0.4 V reduction scan, where the diagnostic optimum square-wave (SW) stripping working range was achieved at 0.72-7.92 μg/mL H. pylori DNA (11 points). A relative standard deviation of 1.68% (RSD, n = 5) was obtained with 3.2 mg/mL H. pylori DNA using a 240 s accumulation time. Under optimum conditions, detection limit was 0.06 μg/mL. The developed sensors can be used for clinical application in the 15th doubted human gastric tissues, since the patient's peak current increased a hundred times more than the negative healthy tissue did. The sensing time obtained was only two minutes, and the process was simpler compared to common PCR amplification and electrophoresis photometric detection systems.  相似文献   

8.
Novel carbon materials in biosensor systems   总被引:2,自引:0,他引:2  
In this work, novel carbon materials are evaluated as transducers, stabilizers and mediators for the construction of amperometric biosensors. It is shown that materials such as fullerenes and carbon nanotubes are promising materials as electrochemical mediators and enzyme stabilizers. Additionally porous carbon and porous glassy carbon are excellent transducers for amperometric measurements, while they provide cavities adequate for enzyme immobilization. At the same time, the sensitivity to peroxide is shown to depend on the activation procedures. Treatment that introduces oxygen groups increases the sensitivity of the carbon-based sensor to hydrogen peroxide considerably. These materials are used for the construction, mediation and stabilization of glucose biosensor.  相似文献   

9.
A biosensor for rapid detection of bacterial count based on adenosine 5′-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin–luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 103 to 108 colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n = 22) within 5 min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.  相似文献   

10.
Measurements of pollutants such as toluene are critical for the characterization of contaminated sites and for the monitoring of remediation processes and wastewater treatment effluents. Fiber optic enzymatic biosensors have the potential to provide cost-effective, real time, continuous, in situ measurements. In this study, a fiber optic enzymatic biosensor was constructed and characterized for the measurement of toluene concentrations in aqueous solutions. The biological recognition element was toluene ortho-monooxygenase (TOM), expressed by Escherichia coli TG1 carrying pBS(Kan)TOM, while an optical fiber coated with an oxygen-sensitive ruthenium-based phosphorescent dye served as the transducer. Toluene was detected based on the enzymatic reaction catalyzed by TOM, which resulted in the consumption of oxygen and changes in the phosphorescence intensity. The biosensor was found to have a limit of detection of 3 μM, a linear signal range up to 100 μM, and a response time of 1 h. The performance was reproducible with different biosensors (RSD=7.4%, n=8). The biosensor activity declined with each measurement and with storage time, particularly at elevated temperatures. This activity loss could be partially reversed by exposure to formate, suggesting that NADH consumption was the primary factor limiting lifetime. This is the first report of an enzymatic toluene sensor and of an oxygenase-based biosensor. Since many oxygenases have been reported, the design concept of this oxygenase-based biosensor has the potential to broaden biosensor applications in environmental monitoring.  相似文献   

11.
Electrically active polyaniline coated magnetic (EAPM) nanoparticle-based biosensor has been developed for the detection of Bacillus anthracis endospores in contaminated food samples. The 100 nm-diameter EAPM nanoparticles are synthesized from aniline monomer (made electrically active by acid doping) coating the surface of gamma iron oxide cores. The magnetic, electrical, and structural characteristics of the synthesized EAPM nanoparticles have been studied using superconducting quantum interference device (SQUID), four-point probe, and transmission electron microscopy (TEM). Room temperature hysteresis of the synthesized nanoparticles shows a saturation magnetization value of 44.1 emu/g. The EAPM nanoparticles are biologically modified to act as an immunomagnetic concentrator of B. anthracis spores from lettuce, ground beef and whole milk samples and are directly applied to a direct-charge transfer biosensor. The detection mechanism of the biosensor depends on the capillary flow of the captured spores on the biosensor surface along with direct-charge transfer across the EAPM nanoparticles. Experimental results indicate that the biosensor is able to detect B. anthracis spores at concentrations as low as 4.2 x 10(2)spores/ml from the samples. The EAPM-based biosensor detection system is fast and reliable with a total detection time of 16 min.  相似文献   

12.
A novel FAD-dependent glucose dehydrogenase (FAD-GDH) was found and its enzymatic property for glucose sensing was characterized. FAD-GDH oxidized glucose in the presence of some artificial electron acceptors, except for O2, and exhibited thermostability, high substrate specificity and a large Michaelis constant for glucose. FAD-GDH was applied to an amperometric glucose sensor with Fe(CN)6(3-) as a soluble mediator. The use of a relatively high concentration of Fe(CN)6(3-) resulted in a good linearity between the current response and the glucose concentration, taking into account a large Michaelis constant for Fe(CN)6(3-). The glucose sensor was completely insensitive to O2 and responded linearly to glucose up to 30 mM. Compared to glucose, the response to other saccharides was negligible. The sensor can be stored at room temperature in a desiccator for at least one month without any change in the response or activity.  相似文献   

13.
Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases.  相似文献   

14.
The enzymatic synthesis of N-substituted acrylamides (N-isopropyl acrylamide and N, N-dimethylaminopropyl acrylamide) was demonstrated for the first time. The Rhodococcus erythropolis 37 strain, exhibiting acylamidase activity, was used as a source of enzyme, and water-dissolved acrylamide and isopropylamine/dimethylaminopropylamine served as substrates. The optimum conditions for the synthesis of acrylamide N-substitutes were determined using N-isopropyl acrylamide. The yield of the product was maximum at pH 9.5–10.5, substrate (acrylamide/isopropylamine) ratio within the range from 1.3: 1 to 2: 1, and absolute substrate concentrations of 8.0 (acrylamide) and 4.0% (isopropylamine). These conditions allowed for the synthesis of 22 g/L of N-isopropyl acrylamide.  相似文献   

15.
A rapid method was developed to detect salmonellae in food samples. The method gave a possibility to obtain results after 28 h 30 min. The preenrichment in buffered peptone water lasted for 6 h, the enrichment in Rappaport-Vassiliadis medium was applied for 18 h followed by PCR with INVA1-INVA2 primer pair, adapting Chiu and Ou's method. This procedure was suitable to demonstrate salmonella contamination at min. 10 cfu/25 g sample. Out of 18 samples there was a good agreement between the results of the conventional and rapid methods in case of 17 samples. PCR with SPVC1-SPVC2 primer pair informing about the presence of virulence plasmid was performed in separate tubes, because decreased sensitivity was observed in case of multiplex PCR.  相似文献   

16.
A novel capacitance biosensor based on synthetic phytochelatins for sensitive detection of heavy metals is described. Synthetic phytochelatin (Glu-Cys)(20)Gly (EC20) fused to the maltose binding domain protein was expressed in Escherichia coli and purified for construction of the biosensor. The new biosensor was able to detect Hg(2+), Cd(2+), Pb(2+), Cu(2+) and Zn(2+) ions in concentration range of 100 fM-10 mM, and the order of sensitivity was S(Zn)>S(Cu)>S(Hg)>S(Cd) congruent with S(Pb). The biological sensing element of the sensor could be regenerated using EDTA and the storage stability of the biosensor was 15 days.  相似文献   

17.
An impedance biosensor based on interdigitated array microelectrode (IDAM) coupled with magnetic nanoparticle-antibody conjugates (MNAC) was developed and evaluated for rapid and specific detection of E. coli O157:H7 in ground beef samples. MNAC were prepared by immobilizing biotin-labeled polyclonal goat anti-E. coli antibodies onto streptavidin-coated magnetic nanoparticles, which were used to separate and concentrate E. coli O157:H7 from ground beef samples. Magnitude of impedance and phase angle were measured in a frequency range of 10 Hz to 1 MHz in the presence of 0.1M mannitol solution. The lowest detection limits of this biosensor for detection of E. coli O157:H7 in pure culture and ground beef samples were 7.4 x 10(4) and 8.0 x 10(5)CFU ml(-1), respectively. The regression equation for the normalized impedance change (NIC) versus E. coli O157:H7 concentration (N) in ground beef samples was NIC=15.55 N-71.04 with R(2)=0.95. Sensitivity of the impedance biosensor was improved by 35% by concentrating bacterial cells attached to MNAC in the active layer of IDAM above the surface of electrodes with the help of a magnetic field. Based on equivalent circuit analysis, it was observed that bulk resistance and double layer capacitance were responsible for the impedance change caused by the presence of E. coli O157:H7 on the surface of IDAM. Surface immobilization techniques, redox probes, or sample incubation were not used in this impedance biosensor. The total detection time from sampling to measurement was 35 min.  相似文献   

18.
Samples of wheat for human nutrition, wheat flour, bread and noodles were analysed for different trichothecenes and partly for zearalenone (ZEA). The toxin contents for deoxynivalenol (DON) and ZEA were compared with the maximum tolerated levels recently discussed for foodstuffs in Germany. The limits for DON were exceeded in 20, 15, 5 and 9% of the samples of wheat, wheat flour, bread and noodles respectively, the limits for ZEA in 4 and 0% for wheat and wheat flour respectively.  相似文献   

19.
Botulinum neurotoxins (BoNTs) are among the most toxic substances known. Surveillance and diagnostics require methods for rapid detection of BoNTs in complex media such as foodstuffs and human serum. We have developed in vitro assays to specifically detect the protease activity of botulinum neurotoxin B (BoNT/B) on a time scale of minutes. Cleavage of the BoNT/B substrate VAMP2, a membrane SNARE protein associated with synaptic vesicles, was monitored using real-time surface plasmon resonance to measure vesicle capture by specific antibodies coupled to microchips. The assay is functional in low-ionic-strength buffers and stable over a wide range of pH values (5.5–9.0). Endoproteolytic cleavage of VAMP2 was detected in 10 min with 2 pM native BoNT/B holotoxin. Contamination of liquid food products such as carrot juice, apple juice, and milk with low picomolar amounts of BoNT/B was revealed within 3 h. BoNT/B activity was detected in sera from patients with type B botulism but not in healthy controls or patients with other neurological diseases. This robust, sensitive, and rapid protein chip assay is appropriate for monitoring BoNT/B in food products and diagnostic tests for type B botulism and could replace the current in vivo mouse bioassay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号