首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A comparative study of the bacterial flora of the water of Chesapeake Bay and Tokyo Bay was undertaken to assess similarities and differences between the autochthonous flora of the two geographical sites and to test the hypothesis that, given similarities in environmental parameters, similar bacterial populations will be found, despite extreme geographic distance between locations. A total of 195 aerobic, heterotrophic bacterial strains isolated from Chesapeake Bay and Tokyo Bay water were examined for 115 biochemical, cultural, morphological, nutritional, and physiological characters. The data were analyzed by the methods of numerical taxonomy. From sorted similarity matrices, 77% of the isolates could be grouped into 30 phena and presumptively identified as Acinetobacter-Moraxella, Caulobacter, coryneforms, Pseudomonas, and Vibrio spp. Vibrio and Acinetobacter species were found to be common in the estuarine waters of Chesapeake Bay, whereas Acinetobacter-Moraxella and Caulobacter predominated in Tokyo Bay waters, at the sites sampled in the study.  相似文献   

2.
Ecology of Vibrio parahaemolyticus in Chesapeake Bay   总被引:49,自引:4,他引:49  
A study of the ecology of Vibrio parahaemolyticus and related vibrios in the Rhode River area of Chesapeake Bay was carried out over the period December 1970 through August 1971. The incidence of V. parahaemolyticus and related vibrios was found to be correlated with water temperature. The vibrios could not be detected in the water column during the winter months, although they were present in sediment. From late spring to early summer, when water temperatures were 14 +/- 1 C, vibrios over-wintering in sediment were released from the bottom communities and attached to zooplankton, proliferating as the temperature rose. The number of vibrios in and on plankton was reflected in the water column bacterial population densities at water temperatures of ca. 19 C. Thus, temperature of the water column in the range of 14 to 19 C was found to be critical in the annual cycle of the vibrios. Interaction between sediment, water, and zooplankton was found to be essential in the natural estuarine ecosystem. Bacterial counts of zooplankton were found to be temperature dependent. The bacterial population associated with zooplankton was found to be predominantly on external surfaces and was specific, differing from that of the sediment. Vibrio spp. and related organisms comprised the total bacterial population associated with zooplankton in summer months. The ecological role of Vibrio spp., including V. parahaemolyticus, was found to be significant, with respect to their property of chitin digestion and in relation to the population dynamics of zooplankton in Chesapeake Bay.  相似文献   

3.
Vibrio cholerae is autochthonous to natural waters and can pose a health risk when it is consumed via untreated water or contaminated shellfish. The correlation between the occurrence of V. cholerae in Chesapeake Bay and environmental factors was investigated over a 3-year period. Water and plankton samples were collected monthly from five shore sampling sites in northern Chesapeake Bay (January 1998 to February 2000) and from research cruise stations on a north-south transect (summers of 1999 and 2000). Enrichment was used to detect culturable V. cholerae, and 21.1% (n = 427) of the samples were positive. As determined by serology tests, the isolates, did not belong to serogroup O1 or O139 associated with cholera epidemics. A direct fluorescent-antibody assay was used to detect V. cholerae O1, and 23.8% (n = 412) of the samples were positive. V. cholerae was more frequently detected during the warmer months and in northern Chesapeake Bay, where the salinity is lower. Statistical models successfully predicted the presence of V. cholerae as a function of water temperature and salinity. Temperatures above 19 degrees C and salinities between 2 and 14 ppt yielded at least a fourfold increase in the number of detectable V. cholerae. The results suggest that salinity variation in Chesapeake Bay or other parameters associated with Susquehanna River inflow contribute to the variability in the occurrence of V. cholerae and that salinity is a useful indicator. Under scenarios of global climate change, increased climate variability, accompanied by higher stream flow rates and warmer temperatures, could favor conditions that increase the occurrence of V. cholerae in Chesapeake Bay.  相似文献   

4.
Vibrio vulnificus, an estuarine bacterium, is the causative agent of seafood-related gastroenteritis, primary septicemia, and wound infections worldwide. It occurs as part of the normal microflora of coastal marine environments and can be isolated from water, sediment, and oysters. Hindcast prediction was undertaken to determine spatial and temporal variability in the likelihood of occurrence of V. vulnificus in surface waters of the Chesapeake Bay. Hindcast predictions were achieved by forcing a multivariate habitat suitability model with simulated sea surface temperature and salinity in the Bay for the period between 1991 and 2005 and the potential hotspots of occurrence of V. vulnificus in the Chesapeake Bay were identified. The likelihood of occurrence of V. vulnificus during high and low rainfall years was analyzed. From results of the study, it is concluded that hindcast prediction yields an improved understanding of environmental conditions associated with occurrence of V. vulnificus in the Chesapeake Bay.  相似文献   

5.
Vibrio cholerae is indigenous to the aquatic environment, and serotype non-O1 strains are readily isolated from coastal waters. However, in comparison with intensive studies of the O1 group, relatively little effort has been made to analyze the population structure and molecular evolution of non-O1 V. cholerae. In this study, high-resolution genomic DNA fingerprinting, amplified fragment length polymorphism (AFLP), was used to characterize the temporal and spatial genetic diversity of 67 V. cholerae strains isolated from Chesapeake Bay during April through July 1998, at four different sampling sites. Isolation of V. cholerae during the winter months (January through March) was unsuccessful, as observed in earlier studies (J. H. L. Kaper, R. R. Colwell, and S. W. Joseph, Appl. Environ. Microbiol. 37:91-103, 1979). AFLP fingerprints subjected to similarity analysis yielded a grouping of isolates into three large clusters, reflecting time of the year when the strains were isolated. April and May isolates were closely related, while July isolates were genetically diverse and did not cluster with the isolates obtained earlier in the year. The results suggest that the population structure of V. cholerae undergoes a shift in genotype that is linked to changes in environmental conditions. From January to July, the water temperature increased from 3 degrees C to 27.5 degrees C, bacterial direct counts increased nearly an order of magnitude, and the chlorophyll a concentration tripled (or even quadrupled at some sites). No correlation was observed between genetic similarity among isolates and geographical source of isolation, since isolates found at a single sampling site were genetically diverse and genetically identical isolates were found at several of the sampling sites. Thus, V. cholerae populations may be transported by surface currents throughout the entire Bay, or, more likely, similar environmental conditions may be selected for a specific genotype. The dynamic nature of the population structure of this bacterial species in Chesapeake Bay provides new insight into the ecology and molecular evolution of V. cholerae in the natural environment.  相似文献   

6.
A total of 65 isolates of Vibrio cholerae, serotypes other than O--1, have been recovered from water, sediment, and shellfish samples from the Chesapeake Bay. Isolations were not random, but followed a distinct pattern in which salinity appeared to be a controlling factor in V. cholerae distribution. Water salinity at stations yielding V. cholerae (13 out of 21 stations) was 4 to 17 0/00, whereas the salinity of water at stations from which V. cholerae organisms were not isolated was less than 4 or greater than 17 0/00. From results of statistical analyses, no correlation between incidence of fecal coliforms and V. cholerae could be detected, whereas incidence of Salmonella species, measured concurrently, was clearly correlated with fecal coliforms, with Salmonella isolated only in areas of high fecal coliform levels. A seasonal cycle could not be determined since strains of V. cholerae were detectable at low levels (ca. 1 to 10 cells/liter) throughout the year. Although none of the Chesapeake Bay isolates was agglutinable in V. cholerae O group 1 antiserum, the majority for Y-1 adrenal cells. Furthermore, rabbit ileal loop and mouse lethality tests were also positive for the Chesapeake Bay isolates, with average fluid accumulation in positive ileal loops ranging from 0.21 to 2.11 ml/cm. Serotypes of the strains of V. cholerae recovered from Chesapeake Bay were those of wide geographic distribution. It is concluded from the data assembled to date, that V. cholerae is an autochthonous estuarine bacterial species resident in Chesapeake Bay.  相似文献   

7.
Predictability of Vibrio cholerae in Chesapeake Bay   总被引:1,自引:0,他引:1       下载免费PDF全文
Vibrio cholerae is autochthonous to natural waters and can pose a health risk when it is consumed via untreated water or contaminated shellfish. The correlation between the occurrence of V. cholerae in Chesapeake Bay and environmental factors was investigated over a 3-year period. Water and plankton samples were collected monthly from five shore sampling sites in northern Chesapeake Bay (January 1998 to February 2000) and from research cruise stations on a north-south transect (summers of 1999 and 2000). Enrichment was used to detect culturable V. cholerae, and 21.1% (n = 427) of the samples were positive. As determined by serology tests, the isolates, did not belong to serogroup O1 or O139 associated with cholera epidemics. A direct fluorescent-antibody assay was used to detect V. cholerae O1, and 23.8% (n = 412) of the samples were positive. V. cholerae was more frequently detected during the warmer months and in northern Chesapeake Bay, where the salinity is lower. Statistical models successfully predicted the presence of V. cholerae as a function of water temperature and salinity. Temperatures above 19°C and salinities between 2 and 14 ppt yielded at least a fourfold increase in the number of detectable V. cholerae. The results suggest that salinity variation in Chesapeake Bay or other parameters associated with Susquehanna River inflow contribute to the variability in the occurrence of V. cholerae and that salinity is a useful indicator. Under scenarios of global climate change, increased climate variability, accompanied by higher stream flow rates and warmer temperatures, could favor conditions that increase the occurrence of V. cholerae in Chesapeake Bay.  相似文献   

8.
Incidence of Vibrio parahaemolyticus in Chesapeake Bay   总被引:4,自引:2,他引:2       下载免费PDF全文
A Bay-wide survey of the distribution of Vibrio parahaemolyticus was carried out in Chesapeake Bay during May 1972, to determine whether the annual cycle of V. parahaemolyticus which was observed to occur in the Rhode River subestuary of Chesapeake Bay took place in other parts of Chesapeake Bay. In an earlier study, April to early June, when the water temperature rises from 14 to 19 C, was found to be a critical period in the annual cycle of the organism in the Rhode River, since this is the time period when the annual cycle is initiated. Results of this study, however, revealed that V. parahaemolyticus could not be found in the water column during May 1972. Nevertheless, several samples of sediment and plankton yielded V. parahaemolyticus isolates. Comparison of data with those for the Rhode River area examined in the earlier studies of the annual cycle of V. parahaemolyticus suggests that the time of initiation of the annual cycle of V. parahaemolyticus in the open Bay proper may be influenced by various factors such as temperature and salinity, i.e., deeper water locations may show initiation of the V. parahaemolyticus annual cycle later than shallow areas. Confirmation of the presence of the organisms in the samples studied was accomplished using numerical taxonomy with 19 reference strains also included in the analyses.  相似文献   

9.
The generic composition of the heterotrophic bacterial population of Tokyo Bay, which is now highly polluted and eutrophic, was compared with that of the adjacent, less polluted regions of Sagami Bay and Suruga Bay. Members of Vibrionaceae predominated in the bacterial flora of seawater and zooplankton samples from Sagami Bay, Suruga Bay, and the mouth of Tokyo Bay. However,Vibrio spp. formed only a small proportion of the bacterial population of the water and sediment samples from the inner Tokyo Bay; there the Gram-negative, nonmotile, nonpigmented bacteria, which were tentatively identified asAcinetobacter, were predominant. The result of experiments, in which seawater samples from Tokyo Bay were incubated under various experimental conditions, indicated that two significant factors apparently control the growth ofVibrio spp. in seawater; (1) a direct antagonism betweenVibrios and phytoplankton undergoing rapid growth, and (2) a limiting organic nutrient forvibrios.  相似文献   

10.
PCR primers specific for the chiA gene were designed by alignment and selection of highly conserved regions of chiA sequences from Serratia marcescens, Alteromonas sp., Bacillus circulans and Aeromonas caviae. These primers were used to amplify a 225 bp fragment of the chiA gene from Vibrio harveyi to produce a chiA gene probe. The chiA PCR primers and probe were used to detect the presence of the chiA gene in an assemblage of 53 reference strains and gave consistent results. Selected chiA fragments amplified by PCR were cloned and sequenced from nine known strains and from Chesapeake Bay isolates 6d and 11d. This confirmed the specificity and utility of the primers for detection of chiA-positive environmental strains. Over 1000 bacterial isolates from Chesapeake Bay water samples were tested for the presence of the chiA gene which was found to be present in 5-41% (average 21%) of the culturable bacterial community. The approach developed in this study was valuable for isolation and enumeration of chiA-positive bacteria in environmental samples.  相似文献   

11.
Vibrio cholerae is indigenous to the aquatic environment, and serotype non-O1 strains are readily isolated from coastal waters. However, in comparison with intensive studies of the O1 group, relatively little effort has been made to analyze the population structure and molecular evolution of non-O1 V. cholerae. In this study, high-resolution genomic DNA fingerprinting, amplified fragment length polymorphism (AFLP), was used to characterize the temporal and spatial genetic diversity of 67 V. cholerae strains isolated from Chesapeake Bay during April through July 1998, at four different sampling sites. Isolation of V. cholerae during the winter months (January through March) was unsuccessful, as observed in earlier studies (J. H. L. Kaper, R. R. Colwell, and S. W. Joseph, Appl. Environ. Microbiol. 37:91–103, 1979). AFLP fingerprints subjected to similarity analysis yielded a grouping of isolates into three large clusters, reflecting time of the year when the strains were isolated. April and May isolates were closely related, while July isolates were genetically diverse and did not cluster with the isolates obtained earlier in the year. The results suggest that the population structure of V. cholerae undergoes a shift in genotype that is linked to changes in environmental conditions. From January to July, the water temperature increased from 3°C to 27.5°C, bacterial direct counts increased nearly an order of magnitude, and the chlorophyll a concentration tripled (or even quadrupled at some sites). No correlation was observed between genetic similarity among isolates and geographical source of isolation, since isolates found at a single sampling site were genetically diverse and genetically identical isolates were found at several of the sampling sites. Thus, V. cholerae populations may be transported by surface currents throughout the entire Bay, or, more likely, similar environmental conditions may be selected for a specific genotype. The dynamic nature of the population structure of this bacterial species in Chesapeake Bay provides new insight into the ecology and molecular evolution of V. cholerae in the natural environment.  相似文献   

12.
Distribution of viruses in the Chesapeake Bay.   总被引:13,自引:0,他引:13  
High virus counts were found in water samples collected from the Chesapeake Bay. Viruses were enumerated by ultracentrifugation of water samples onto grids which were visualized by transmission electron microscopy. Virus counts in September 1990, April 1991, June 1991, August 1991, and October 1991 ranged between 2.6 x 10(6) and 1.4 x 10(8) viruses ml-1 with a mean of 2.5 x 10(7) viruses ml-1. Virus counts were usually at least three times higher than direct bacterial counts in corresponding samples. Virus counts in August and October were significantly higher than at the other sampling times, whereas bacterial counts were significantly lower at that time, yielding mean virus-to-bacterium ratios of 12.6 and 25.6, respectively. From analysis of morphology of the virus particles, it is concluded that a large proportion of the viruses are bacteriophages. The high virus counts obtained in this study suggest that viruses may be an important factor affecting bacterial populations in the Chesapeake Bay, with implications for gene transfer in natural aquatic bacterial populations and release of genetically engineered microorganisms to estuarine and coastal environments.  相似文献   

13.
Distribution of viruses in the Chesapeake Bay.   总被引:16,自引:6,他引:10       下载免费PDF全文
High virus counts were found in water samples collected from the Chesapeake Bay. Viruses were enumerated by ultracentrifugation of water samples onto grids which were visualized by transmission electron microscopy. Virus counts in September 1990, April 1991, June 1991, August 1991, and October 1991 ranged between 2.6 x 10(6) and 1.4 x 10(8) viruses ml-1 with a mean of 2.5 x 10(7) viruses ml-1. Virus counts were usually at least three times higher than direct bacterial counts in corresponding samples. Virus counts in August and October were significantly higher than at the other sampling times, whereas bacterial counts were significantly lower at that time, yielding mean virus-to-bacterium ratios of 12.6 and 25.6, respectively. From analysis of morphology of the virus particles, it is concluded that a large proportion of the viruses are bacteriophages. The high virus counts obtained in this study suggest that viruses may be an important factor affecting bacterial populations in the Chesapeake Bay, with implications for gene transfer in natural aquatic bacterial populations and release of genetically engineered microorganisms to estuarine and coastal environments.  相似文献   

14.
The objectives of this study were to document the spatial and temporal distributions and compositions of bacteria in the sediments and overlying waters of an important urban shellfishing area in the lower Chesapeake Bay region, the Lynnhaven Estuary. Marked fluctuations were observed in the date of many of the physicochemical parameters and the indicator bacteria. The higher-salinity water and coarser sediment of the inlet site showed lower overall bacterial densities than did the headwater sites, where freshwater runoff and decreased tidal action were characteristic. Densities of benthic indicator bacteria, when expressed on a volumetric basis, were significantly greater than counts in the overlying waters. These counts were indicative of a fecally polluted system and were well above the safe maximum limits for shellfish-growing waters. Significantly fewer total and fecal bacteria were observed in both the water and the sediment during the warm months of May, July, and August. The primary sources of the Lynnhaven's bacterial pollution appeared to be typical of urban and agricultural runoff, although failure of septic tank systems was suspected as a problem in the Lynnhaven's western branch. These results illustrated that sediments in shellfishing areas could serve as a reservoir for high densities of indicator bacteria and that, potentially, pathogens could pose a health hazard.  相似文献   

15.
16.
Based on a continuous 20-year data base of monthly samplingin Chesapeake Bay and tidal regions of its major tributaries,1454 phytoplankton taxa have been identified in these waters.They represent a diverse assemblage of species with a dominantdiatom flora throughout the year, in addition to large seasonalrepresentation by chlorophytes, cyanobacteria, cryptophytesand dinoflagellates. Included among this flora were 34 potentialharmful or toxin producing species. The phytoplankton compositionsassociated with the seasonal successional patterns are discussed,in addition to characterizing the dominant floral relationships,with comparison to early composition records within the Bay.Several of the present day most common taxa were similar tothose reported in sediment cores from the Bay dating to periodsprior to European settlement. Comparison with collections made8 decades ago (1916–1922) within Chesapeake Bay indicatedseveral of the same dominant flora remain dominant today; however,their cell concentrations are now significantly greater alongwith an increased diversity of species compared with these earlierstudies.  相似文献   

17.
A study of the incidence of Salmonella spp., Vibrio parahaemolyticus-like organisms, and clostridium botulinum in samples collected at five stations located in the Upper Chesapeake Bay, a major estuary on the Atlantic Coast of the United States, was conducted in December 1973 through December 1974. C. botulinum types B and E were detected in 12.3% of the total sediment samples examined. V. parahaemolyticus was recovered from 10.4% of a total of 86 water, sediment, and suspended sediment samples. Of 131 samples examined for the presence of Salmonella spp., approximately 3% were found to be positive for serologically confirmed Salmonella isolates. Shellfish examined during the investigation were also found to be free of enteric pathogens. The low frequency of occurrence of V. parahaemolyticus was attributed to the low salinities encountered at the sites included in the study. A low incidence of Salmonella spp. in the Upper Chesapeake Bay samples was found, whereas the distribution of C. botulinum appeared to be both random and autochthonous. A strong relationship between presence of potential pathogens and other generally accepted microbiological indicators of pollution was not observed.  相似文献   

18.
The effect that climate change and variability will have on waterborne bacteria is a topic of increasing concern for coastal ecosystems, including the Chesapeake Bay. Surface water temperature trends in the Bay indicate a warming pattern of roughly 0.3–0.4°C per decade over the past 30 years. It is unclear what impact future warming will have on pathogens currently found in the Bay, including Vibrio spp. Using historical environmental data, combined with three different statistical models of Vibrio vulnificus probability, we explore the relationship between environmental change and predicted Vibrio vulnificus presence in the upper Chesapeake Bay. We find that the predicted response of V. vulnificus probability to high temperatures in the Bay differs systematically between models of differing structure. As existing publicly available datasets are inadequate to determine which model structure is most appropriate, the impact of climatic change on the probability of V. vulnificus presence in the Chesapeake Bay remains uncertain. This result points to the challenge of characterizing climate sensitivity of ecological systems in which data are sparse and only statistical models of ecological sensitivity exist.  相似文献   

19.
The seasonal abundance of gamma-subclass Proteobacteria, Vibrio-Photobacterium, Vibrio cholerae-Vibrio mimicus, Vibrio cincinnatiensis, and Vibrio vulnificus in the Choptank River of Chesapeake Bay associated with zooplankton was monitored from April to December 1996. Large (>202- microm) and small (64- to 202- microm) size classes of zooplankton were collected, and the bacteria associated with each of the zooplankton size classes were enumerated by fluorescent oligonucleotide direct count. Large populations of bacteria were found to be associated with both the large and small size classes of zooplankton. Also, the species of bacteria associated with the zooplankton showed seasonal abundance, with the largest numbers occurring in the early spring and again in the summer, when zooplankton total numbers were correspondingly large. Approximately 0.01 to 40.0% of the total water column bacteria were associated with zooplankton, with the percentage of the total water column bacteria population associated with zooplankton varying by season. A taxonomically diverse group of bacteria was associated with zooplankton, and a larger proportion was found in and on zooplankton during the cooler months of the year, with selected taxa comprising a larger percent of the Bacteria in the summer. V. cholerae-V. mimicus and V. vulnificus comprised the bulk of the large and small zooplankton-associated Vibrio-Photobacterium species. In contrast, V. cincinnatiensis accounted for less than 0.1 to 3%. It is concluded that water column and zooplankton bacterial populations vary independently with respect to species composition since no correlation was observed between taxa occurring with highest frequency in the water column and those in association with zooplankton.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号