共查询到20条相似文献,搜索用时 15 毫秒
1.
Boisnard S Ruprich-Robert G Florent M Da Silva B Chapeland-Leclerc F Papon N 《Eukaryotic cell》2008,7(12):2179-2183
In the present study, we have investigated the role of SSK2, PBS2, and HOG1, encoding modules of the high-osmolarity-glycerol mitogen-activated protein kinase pathway in Candida lusitaniae. Functional analysis of mutants indicated that Ssk2p, Pbs2p, and Hog1p are involved in osmotolerance, drug sensitivity, and heavy metal tolerance but not in oxidant stress adaptation. 相似文献
2.
In Saccharomyces cerevisiae, external high osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which controls various aspects of osmoadaptation. Ssk1 is a homolog of bacterial two-component response regulators and activates the Ssk2 MAPK kinase kinase upstream of Hog1. It has been proposed that unphosphorylated Ssk1 (Ssk1-OH) is the active form and that Ssk1 phosphorylated (Ssk1~P) at Asp554 by the Sln1-Ypd1-Ssk1 multistep phosphorelay mechanism is the inactive form. In this study, we show that constitutive activation of Ssk2 occurs when Ssk1 phosphorylation is blocked by either an Ssk1 mutation at the phosphorylation site or an Ssk1 mutation that inhibits its interaction with Ypd1, the donor of phosphate to Ssk1. Thus, Ssk1-OH is indeed necessary for Ssk2 activation. However, overexpression of wild-type Ssk1 or of an Ssk1 mutant that cannot bind Ssk2 prevents constitutively active Ssk1 mutants from activating Ssk2. Therefore, Ssk1 has a dual function as both an activator of Ssk2 and an inhibitor of Ssk1 itself. We also found that Ssk1 exists mostly as a dimer within cells. From mutant phenotypes, we deduce that only the Ssk1-OH/Ssk1-OH dimer can activate Ssk2 efficiently. Hence, because Ssk1~P binds to and inhibits Ssk1-OH, moderate fluctuation of the level of Ssk1-OH does not lead to nonphysiological and detrimental activation of Hog1. 相似文献
3.
Hernndez-Elvira Mariana Salas-Delgado Griselda Kawasaki Laura Domnguez-Martin Eunice Cruz-Martnez Uriel Olivares Abiram E. Torres-Quiroz Francisco Ongay-Larios Laura Coria Roberto 《International microbiology》2022,25(3):639-647
International Microbiology - In addition to the UPR pathway, yeast cells require components of the HOG pathway to respond to ER stress. In this work, we found that unphosphorylated Sln1 and Ssk1... 相似文献
4.
A human homolog of the yeast Ssk2/Ssk22 MAP kinase kinase kinases, MTK1, mediates stress-induced activation of the p38 and JNK pathways. 总被引:6,自引:5,他引:6
A human homolog of the yeast Ssk2 and Ssk22 mitogen-activated protein kinase kinase kinases (MAPKKK) was cloned by functional complementation of the osmosensitivity of the yeast ssk2delta ssk22delta sho1delta triple mutant. This kinase, termed MTK1 (MAP Three Kinase 1), is 1607 amino acids long and is structurally highly similar to the yeast Ssk2 and Ssk22 MAPKKKs. In mammalian cells (COS-7 and HeLa), MTK1 overexpression stimulated both the p38 and JNK MAP kinase pathways, but not the ERK pathway. MTK1 overexpression also activated the MKK3, MKK6 and SEK1 MAPKKs, but not the MEK1 MAPKK. Furthermore, MTK1 phosphorylated and activated MKK6 and SEK1 in vitro. Overexpression of a dominant-negative MTK1 mutant [MTK1(K/R)] strongly inhibited the activation of the p38 pathway by environmental stresses (osmotic shock, UV and anisomycin), but not the p38 activation by the cytokine TNF-alpha. The dominant-negative MTK1(K/R) had no effect on the activation of the JNK pathway or the ERK pathway. These results indicate that MTK1 is a major mediator of environmental stresses that activate the p38 MAPK pathway, and is also a minor mediator of the JNK pathway. 相似文献
5.
Sho1 and Pbs2 act as coscaffolds linking components in the yeast high osmolarity MAP kinase pathway 总被引:1,自引:0,他引:1
Scaffold proteins mediate efficient and specific signaling in several mitogen-activated protein (MAP) kinase cascades. In the yeast high osmolarity response pathway, the MAP kinase kinase Pbs2 is thought to function as a scaffold, since it binds the osmosensor Sho1, the upstream MAP kinase kinase kinase Ste11, and the downstream MAP kinase Hog1. Nonetheless, previous work has shown that Ste11 can be activated even when Pbs2 is deleted, resulting in inappropriate crosstalk to the mating pathway. We have found a region in the C terminus of Sho1 that binds Ste11 independently of Pbs2 and is required for crosstalk. These data support a model in which Sho1 has at least two separable interaction regions: one that binds Ste11 and mediates its activation, and one that binds Pbs2, directing Ste11 to act on Pbs2. Thus, a network of interactions provided by both Sho1 and Pbs2 appears to direct pathway information flow. 相似文献
6.
In Saccharomyces cerevisiae, a multi-component phosphorelay signal transduction pathway mediates cellular responses to environmental stress. A histidine-containing phosphotransfer protein, YPD1, represents a bifurcation point between the SLN1-YPD1-SSK1 pathway responsible for osmotic stress responses and the SLN1-YPD1-SKN7 pathway involved in cell wall biosynthesis and cell cycle control. The phosphorelay protein YPD1 must physically interact with and transfer phosphoryl groups between three homologous response regulator domains, designated SLN1-R1, SSK1-R2, and SKN7-R3. In this comparative study, the molecular basis of interaction was examined between YPD1 and each of the three response regulator domains utilizing alanine scanning mutagenesis combined with a yeast two-hybrid assay. Results from the yeast two-hybrid assay indicate that all three response regulator domains bind to a common area, largely hydrophobic in nature, on the surface of YPD1. We postulate that other YPD1 surface residues surrounding this common docking site are involved in making specific interactions with one or more of the response regulator domains. 相似文献
7.
In eukaryotes, mitogen-activated protein kinase (MAPK) pathways are very important signal transduction modules that regulate various cellular processes. Although eukaryotic cells possess a number of MAP kinase pathways, normally the MAPKKs selectively activate their cognate MAPK. Recent studies suggest that the MAPK-docking site in MAPKK facilitates this specific recognition and activation. However, the role of the docking site under in vivo conditions has not been demonstrated. In yeast external high osmolarity activates HOG (high osmolarity glycerol) MAPK pathway that consists of MAPKKK (Ste11p or Ssk2p/Ssk22p), MAPKK (Pbs2p), and MAPK (Hog1p). Previously, we have isolated a Pbs2p homologue (Dpbs2p) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show, for the first time, the presence of a MAPK-docking domain in Dpbs2p that is essential for its function in vivo. Mutation in this motif completely abolished its binding to Hog1p in vitro. 相似文献
8.
Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway 总被引:3,自引:0,他引:3
Tatebayashi K Tanaka K Yang HY Yamamoto K Matsushita Y Tomida T Imai M Saito H 《The EMBO journal》2007,26(15):3521-3533
To cope with life-threatening high osmolarity, yeast activates the high-osmolarity glycerol (HOG) signaling pathway, whose core element is the Hog1 MAP kinase cascade. Activated Hog1 regulates the cell cycle, protein translation, and gene expression. Upstream of the HOG pathway are functionally redundant SLN1 and SHO1 signaling branches. However, neither the osmosensor nor the signal generator of the SHO1 branch has been clearly defined. Here, we show that the mucin-like transmembrane proteins Hkr1 and Msb2 are the potential osmosensors for the SHO1 branch. Hyperactive forms of Hkr1 and Msb2 can activate the HOG pathway only in the presence of Sho1, whereas a hyperactive Sho1 mutant activates the HOG pathway in the absence of both Hkr1 and Msb2, indicating that Hkr1 and Msb2 are the most upstream elements known so far in the SHO1 branch. Hkr1 and Msb2 individually form a complex with Sho1, and, upon high external osmolarity stress, appear to induce Sho1 to generate an intracellular signal. Furthermore, Msb2, but not Hkr1, can also generate an intracellular signal in a Sho1-independent manner. 相似文献
9.
10.
The determination of the CO2/O2 specificity factor (Ω) is very important to investigate the Rubisco carbon assimilation efficiency. In this paper, it is
proved that previous formulae can introduce notable errors into calculating the CO2/O2 specificity factor (Ω) because CO2 and O2 are both the substrates and the mutually competitive inhibitors for Rubisco. A simple integrated equation is proposed to
calculate the CO2/O2 specificity factor (Ω). On the other hand, previous multi-step procedures, including the manipulation of radioisotope (14C and/or 3H) and the chromatographic separation of the products, are inconvenient and may cause much random error. An improved assay
procedure is presented therefore, which includes the spectrophotometric measurement of 3-phosphoglycerate-dependent NADH oxidation
with a coupled enzyme system.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
11.
Functional interactions between a mitogen-activated protein kinase (MAPK) and its regulators require specific docking interactions. Here, we investigated the mechanism by which the yeast osmoregulatory Hog1 MAPK specifically interacts with its activator, the MAPK kinase Pbs2, and its major inactivator, the protein phosphatase Ptp2. We found, in the N-terminal noncatalytic region of Pbs2, a specific Hog1-binding domain, termed HBD-1. We also defined two adjacent Pbs2-binding sites in Hog1, namely, the common docking (CD) domain and Pbs2-binding domain 2 (PBD-2). The PBD-2 docking site appears to be sterically blocked in the intact Hog1 molecule, but its affinity to Pbs2 is apparent in shorter fragments of Hog1. Both the CD and the PBD-2 docking sites are required for the optimal activation of Hog1 by Pbs2, and in the absence of both sites, Hog1 cannot be activated by Pbs2. These data suggest that the initial interaction of Pbs2 with the CD site might induce a conformational change in Hog1 so that the PBD-2 site becomes accessible. The CD and PBD-2 docking sites are also involved in the specific interaction between Hog1 and Ptp2 and govern the dynamic dephosphorylation of activated Hog1. Thus, the CD and the PBD-2 docking sites play critical roles in both the activation and inactivation of Hog1. 相似文献
12.
Regulation of the osmoregulatory HOG MAPK cascade in yeast 总被引:16,自引:0,他引:16
The budding yeast Saccharomyces cerevisiae has at least five signal pathways containing a MAP kinase (MAPK) cascade. The high osmolarity glycerol (HOG) MAPK pathway is essential for yeast survival in high osmolarity environment. This mini-review surveys recent developments in regulation of the HOG pathway with specific emphasis on the roles of protein phosphatases and protein subcellular localization. The Hog1 MAPK in the HOG pathway is negatively regulated jointly by the protein tyrosine phosphatases Ptp2/Ptp3 and the type 2 protein phosphatases Ptc1/Ptc2/Ptc3. Specificities of these phosphatases are determined by docking interactions as well as their cellular localizations. The subcellular localizations of the osmosensors (Sln1 and Sho1), kinases (Pbs2, Hog1), and phosphatases in the HOG pathway are intricately regulated to achieve their specific functions. 相似文献
13.
A new, more gentle enzyme purification for yeast enolase was developed. A series of kinetic experiments was performed with yeast enolase where the concentration of Mg(II) is kept constant and at the Km' level; the addition of Mn(II), Zn(II), or Cu(II) gives a hyperbolic decrease in the enzyme activity. The final velocity of these mixed-metal systems is the same as the velocity obtained only with Mn(II), Zn(II), or Cu(II), respectively. The concentration of the second metal that gives half-maximal effect in the presence of Mg(II) is approximately the same as the apparent Km (Km') value measured for that cation alone. Direct binding of Mn(II) to apoenolase in the absence and presence of Mg(II) shows that Mn(II) and Mg(II) compete for the same metal site on enolase. In the presence of D-2-phosphoglycerate (PGA) and Mg(II), only a single cation site per monomer is occupied by Mn(II). Water proton relaxation rate (PRR) studies of enzyme-ligand complexes containing Mn(II) and Mn(II) in the presence of Mg(II) are consistent with Mn(II) binding at site I under both conditions. PRR titrations of ligands such as the substrate PGA or the inhibitors orthophosphate or fluoride to the enolase-Mn(II)-Mg(II) complex are similar to those obtained for the enolase-Mn(II) complex, also indicating that Mn(II) is at site I in the presence of Mg(II). High-resolution 1H and 31P NMR was used to determine the paramagnetic effect of enolase-bound Mn(II) on the relaxation rates of the nuclei of the competitive inhibitor phosphoglycolate. The distances between the bound Mn(II) and the nuclei were calculated.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
The yeast high osmolarity glycerol (HOG) pathway signals via the Pbs2 MEK and the Hog1 MAPK, whose activity requires phosphorylation of Thr and Tyr in the activation loop. The Ptc1-type 2C Ser/Thr phosphatase (PP2C) inactivates Hog1 by dephosphorylating phospho-Thr, while the Ptp2 and Ptp3 protein tyrosine phosphatases dephosphorylate phospho-Tyr. In this work, we show that the SH3 domain-containing protein Nbp2 negatively regulates Hog1 by recruiting Ptc1 to the Pbs2-Hog1 complex. Consistent with this role, NBP2 acted as a negative regulator similar to PTC1 in phenotypic assays. Biochemical analysis showed that Nbp2, like Ptc1, was required to inactivate Hog1 during adaptation. As predicted for an adapter, deletion of NBP2 disrupted Ptc1-Pbs2 complex formation. Furthermore, Nbp2 contained separate binding sites for Ptc1 and Pbs2: the novel N-terminal domain bound Ptc1, while the SH3 domain bound Pbs2. In addition, the Pbs2 scaffold bound the Nbp2 SH3 via a Pro-rich motif distinct from that which binds the SH3 domain of the positive regulator Sho1. Thus, Nbp2 recruits Ptc1 to Pbs2, a scaffold for both negative and positive regulators. 相似文献
15.
Marcus Krantz Jonas Warringer Christian Waltermann Bodil Nordlander Edda Klipp Anders Blomberg Stefan Hohmann Hiroaki Kitano 《Molecular systems biology》2009,5(1)
Cellular signalling networks integrate environmental stimuli with the information on cellular status. These networks must be robust against stochastic fluctuations in stimuli as well as in the amounts of signalling components. Here, we challenge the yeast HOG signal‐transduction pathway with systematic perturbations in components’ expression levels under various external conditions in search for nodes of fragility. We observe a substantially higher frequency of fragile nodes in this signal‐transduction pathway than that has been observed for other cellular processes. These fragilities disperse without any clear pattern over biochemical functions or location in pathway topology and they are largely independent of pathway activation by external stimuli. However, the strongest toxicities are caused by pathway hyperactivation. In silico analysis highlights the impact of model structure on in silico robustness, and suggests complex formation and scaffolding as important contributors to the observed fragility patterns. Thus, in vivo robustness data can be used to discriminate and improve mathematical models. 相似文献
16.
Yun Quan Stephen M. Hinshaw Pang-Che Wang Stephen C. Harrison Huilin Zhou 《The Journal of cell biology》2021,220(8)
The step-by-step process of chromosome segregation defines the stages of the cell cycle. In eukaryotes, signals controlling these steps converge upon the kinetochore, a multiprotein assembly that connects spindle microtubules to chromosomal centromeres. Kinetochores control and adapt to major chromosomal transactions, including replication of centromeric DNA, biorientation of sister centromeres on the metaphase spindle, and transit of sister chromatids into daughter cells during anaphase. Although the mechanisms that ensure tight microtubule coupling at anaphase are at least partly understood, kinetochore adaptations that support other cell cycle transitions are not. We report here a mechanism that enables regulated control of kinetochore sumoylation. A conserved surface of the Ctf3/CENP-I kinetochore protein provides a binding site for Ulp2, the nuclear enzyme that removes SUMO chains from modified substrates. Ctf3 mutations that disable Ulp2 recruitment cause elevated inner kinetochore sumoylation and defective chromosome segregation. The location of the site within the assembled kinetochore suggests coordination between sumoylation and other cell cycle–regulated processes. 相似文献
17.
In yeast the GCN2 kinase mediates translational control ofGCN4 by phosphorylating the subunit of eIF-2 in response to extracellular amino acid limitation. Although phosphorylation of eIF-2 has been shown to inhibit global protein synthesis, amino acid starvation results in a specific activation effect onGCN4 mRNA translation. Under the same conditions, translation of other mRNAs appears only slightly affected. The mechanism responsible for the observed selectivity of the GCN2 kinase is not clear. Here, we present genetic evidence that suggests that locally restricted action of the GCN2 kinase facilitatesGCN4-specific translational regulation. 相似文献
18.
Tatebayashi K Yamamoto K Tanaka K Tomida T Maruoka T Kasukawa E Saito H 《The EMBO journal》2006,25(13):3033-3044
The yeast high osmolarity glycerol (HOG) signaling pathway can be activated by either of the two upstream pathways, termed the SHO1 and SLN1 branches. When stimulated by high osmolarity, the SHO1 branch activates an MAP kinase module composed of the Ste11 MAPKKK, the Pbs2 MAPKK, and the Hog1 MAPK. To investigate how osmostress activates this MAPK module, we isolated both gain-of-function and loss-of-function alleles in four key genes involved in the SHO1 branch, namely SHO1, CDC42, STE50, and STE11. These mutants were characterized using an HOG-dependent reporter gene, 8xCRE-lacZ. We found that Cdc42, in addition to binding and activating the PAK-like kinases Ste20 and Cla4, binds to the Ste11-Ste50 complex to bring activated Ste20/Cla4 to their substrate Ste11. Activated Ste11 and its HOG pathway-specific substrate, Pbs2, are brought together by Sho1; the Ste11-Ste50 complex binds to the cytoplasmic domain of Sho1, to which Pbs2 also binds. Thus, Cdc42, Ste50, and Sho1 act as adaptor proteins that control the flow of the osmostress signal from Ste20/Cla4 to Ste11, then to Pbs2. 相似文献
19.
A collection of 384 mutations recovered in a tRNA gene (SUP4-o) following exposure of isogenic excision-repair-proficient (RAD1) or deficient (rad1) strains of the yeast Saccharomyces cerevisiae to sunlight was characterized by DNA sequencing. In each case, greater than 90% of the mutations were single base-pair substitutions with events at G.C pairs constituting most of the changes. However, more than half of these substitutions were transversions in the RAD1 strain whereas transitions predominated in the rad1 strain. Tandem double substitutions were recovered in both strains and the individual changes were exclusively G.C----A.T transitions. The majority of single substitutions, and all tandem double changes, were at base-pairs where the pyrimidine(s) was part of a dipyrimidine sequence and the site specificities were consistent with cyclobutane dimers and/or pyrimidine (6-4) pyrimidone photoproducts contributing to sunlight mutagenesis. Yet, the data also pointed to an important role for lesions that form at G.C pairs and give rise to transversions. Analysis of the strand specificity of sunlight mutagenesis indicated that transitions or transversions at G.C pairs occurred preferentially in SUP4-o at sites where a dipyrimidine or a guanine, respectively, was on the transcribed strand. These biases required a functional excision-repair system. 相似文献
20.
In Saccharomyces cerevisiae, external high osmolarity activates the HOG MAPK pathway, which controls various aspects of osmoregulation. MAPKKK Ssk2 is activated by Ssk1 in the SLN1 branch of the osmoregulatory HOG MAPK pathway under hyperosmotic stress. We observed that Ssk2 can be activated independent of Ssk1 upon osmotic shock by an unidentified mechanism. The domain for the Ssk1p-independent activation was identified to be located between the amino acids 177∼240. This region might be involved in the binding of an unknown regulator to Ssk2 which in turn activates Ssk2p without Ssk1p under hyperosmotic stress. The osmotic stress response through the Ssk1p-independent Ssk2p activation is strong, although its duration is short compared with the Ssk1p-dependent activation. The alternative Ssk2p activation is also important for the salt resistance. 相似文献