首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcohol oxidase (alcohol:oxygen oxidoreductase) was crystallized from a methanolgrown yeast, Pichia sp. The crystalline enzyme is homogenous as judged from polyacrylamide gel electrophoresis. Alcohol oxidase catalyzed the oxidation of short-chain primary alcohols (C1 to C6), substituted primary alcohols (2-chloroethanol, 3-chloro-1-propanol, 4-chlorobutanol, isobutanol), and formaldehyde. The general reaction with an oxidizable substrate is as follows: Primary alcohol + O2 → aldehyde + H2O2 Formaldehyde + O2 → formate + H2O2. Secondary alcohols, tertiary alcohols, cyclic alcohols, aromatic alcohols, and aldehydes (except formaldehyde) were not oxidized. The Km values for methanol and formaldehyde are 0.5 and 3.5 mm, respectively. The stoichiometry of substrate oxidized (alcohol or formaldehyde), oxygen consumed, and product formed (aldehyde or formate) is 1:1:1. The purified enzyme has a molecular weight of 300,000 as determined by gel filtration and a subunit size of 76,000 as determined by sodium dodecyl sulfate-gel electrophoresis, indicating that alcohol oxidase consists of four identical subunits. The purified alcohol oxidase has absorption maxima at 460 and 380 nm which were bleached by the addition of methanol. The prosthetic group of the enzyme was identified as a flavin adenine dinucleotide. Alcohol oxidase activity was inhibited by sulfhydryl reagents (p-chloromercuribenzoate, mercuric chloride, 5,5′-dithiobis-2-nitrobenzoate, iodoacetate) indicating the involvement of sulfhydryl groups(s) in the oxidation of alcohols by alcohol oxidase. Hydrogen peroxide (product of the reaction), 2-aminoethanol (substrate analogue), and cupric sulfate also inhibited alcohol oxidase activity.  相似文献   

2.
The oxidation of methanol and formaldehyde was investigated by using some combination systems of alcohol oxidase, catalase, which were purified from Candida N-16, and hydrogen peroxide. The activity of alcohol oxidase was irreversibly inhibited when the enzyme was incubated with 2.5 mm hydrogen peroxide for 15 min. However, the oxidation of methanol to formaldehyde by alcohol oxidase in the presence of catalase was extremely promoted by the addition of 30 mm hydrogen peroxide. Alcohol oxidase could oxidize not only methanol but also formaldehyde as follows: HCHO + 02 + H2O→HCOOH + H2O2. The formaldehyde oxidizing activity was inhibited by hydrogen peroxide. The system containing alcohol oxidase and catalase appears to be the entity of the oxygen-dependent oxidation system of formaldehyde previously found in the cell-free extract of the yeast.  相似文献   

3.
A procedure is described for the qualitative direct identification of alcohol oxidase, alcohol dehydrogenase, and formaldehyde dehydrogenase in yeast colonies. The method has been applied successfully to isolate mutants of Hansenula polymorpha with altered glucose repression of alcohol oxidase.  相似文献   

4.
We isolated a mutant strain of a methanol-utilizing yeast, Candida boidinii S2, which shows improved formaldehyde productivity. The procedure for mutant screening consisted of; 1) induction of alcohol oxidase on a methanol-plate, 2) catabolite inactivation of alcohol oxidase on a glucose-plate, and 3) visualization of alcohol oxidase activity in a colony. One of the mutants, strain AOU-1, showed 1.7 times higher formaldehyde productivity and a higher growth rate on methanol than the parent strain. The high formaldehyde productivity was proved to be due to the high alcohol oxidase activity. No qualitative change of the enzyme was detected between the parent strain and mutant strain AOU-1. The high activity of mutant strain AOU-1 could be attributed to a quantitative change and a change in the rate of enzyme synthesis. Catabolite repression and inactivation of alcohol oxidase in the mutant were also discussed.  相似文献   

5.
A fromaldehyde oxidase activity was found in cellfree extracts of methanol-grown yeast Candida boidinii. Loss of alcohol oxidase activity in a mutant, 48, led to loss of the formaldehyde oxidase activity, indicating that the same enzyme is probably responsible for both activities. This could be demonstrated with the purified alcohol oxidase which oxidizes, besides lower primary alcohols, formaldehyde to formate. The Km value for formaldehyde is 5.7 mM. It seems that alcohol oxidase is not implicated in formaldehyde oxidation in vivo.  相似文献   

6.
In order to improve the production of alcohol oxidase (AOX), a recombinant Pichia pastoris (P. pastoris) system was constructed by transformation of the plasmid pPIC9K-AOX into P. pastoris GS115. The effects of different expression conditions on alcohol oxidase activity in the culture supernatant were investigated in the shake flask scale. The results showed that the highest extracellular activity (562 U/L) of alcohol oxidase was obtained after 56 h induction with 4% methanol at OD600 1.0 in the medium containing 50 g/L maltose, which is about 4.2 folds higher than previously reported. High-purity functional recombinant AOX (>90%) was purified from the culture with the Ni-NTA affinity column and Sephadex G-100 chromatographical methods, with a total recovery rate of 68.9%. Further studies showed that the purified rAOX had similar enzymatic characteristics as the native enzyme, except that the thermal stability and resistance to H2O2 inhibition of rAOX were significantly greater compared to the previous report. The purified rAOX was well tolerant to various water-miscible organic solvents. This efficient expression and purification process will be promising for large-scale production of rAOX as an important diagnostic enzyme for alcohol detection in many areas.  相似文献   

7.
The regulation of the synthesis of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase was investigated in the methanol-utilizing yeast Hansenula polymorpha. The organism was found to synthesize immunologically identical alcohol oxidases during growth on glycerol and methanol. Growth on glycerol, however, was not dependent on the alcohol oxidase, as was shown with a mutant without alcohol oxidase protein. Similarly it was shown with a catalase activity negative mutant that high catalase activity during growth on glycerol was not a prerequisite for the utilization of this substrate, though absolutely required for growth on methanol.Experiments were conducted with mixed substrates to study the influence of methanol on alcohol oxidase synthesis. In batch cultures, growth on ribose plus methanol resulted in an enhanced rate of alcohol oxidase synthesis as compared to ribose alone. In continuous cultures, (D=0.1 h-1) addition of methanol to glycerol-, glucose-, or sorbose-limited cultures gave rise to increased alcohol oxidase activity of up to 20 U/mg, which is about by 2 times higher than the specific activity used for growth on methanol alone. The increase in specific activity of the dissimilatory enzymes on the mixed substrates is partly due to methanol per se, as was shown by a mutant unable to dissimilate or assimilate methanol.  相似文献   

8.
1. The oxidation of methanol to carbon dioxide by Candida N–16 grown on methanol was investigated. The presence of enzymes which catalyze the following reaction was found in the cell-free extract of the yeast employed; CH3OH→HCHO→HCOOH→CO2. 2. Methanol was oxidized to formaldehyde by an alcohol oxidase. The reaction was as follows; CH3OH+O2→HCHO+H2O2. The alcohol oxidase was crystallized after purification by ammonium sulfate-precipitation and column chromatography using DEAE-Sephadex A-50. A prosthetic group of the enzyme was proved to be FAD. The enzyme possessed a broad specificity for alcohols such as methanol, ethanol, n-propanol, n-butanol and n-amylalcohol. The enzyme was inducibly formed only by the addition of methanol. 3. The oxidation of formaldehyde to formate was catalyzed by a NAD-linked dehydrogenase dependent on GSH. 4. Formate was oxidized by a NAD-linked dehydrogenase. 5. Catalase was also found in the extract, and methanol was chemically oxidized by the reaction of catalase and hydrogen peroxide which was generated by the alcohol oxidase system. 6. The oxidation pathway from methanol to carbon dioxide was also found in other methanol-utilizing yeasts such as Candida N-17, Saccharomyces H-1 and Torulopsis M-1.  相似文献   

9.
Tertiary butyl alcohol has often been used experimentally as a “non-metabolizable” alcohol. In this report, evidence is presented that t-butanol serves as a substrate for rat liver microsomes and that it is oxidatively demethylated to yield formaldehyde. The apparent Km for t-butanol is 30 mM while Vmax is about 5.5 nmol per min per mg microsomal protein. Formaldehyde production is stimulated by azide, which prevents destruction of H2O2 by catalase. Hydroxyl radical scavenging agents, such as benzoate, mannitol, and 2-keto-4-thiomethylbutyrate, suppress formaldehyde production. Therefore, the microsomal reaction pathway appears to involve the interaction of t-butanol with hydroxyl radicals generated from H2O2 by the microsomes. Formaldehyde is also produced when t-butanol is incubated with model hydroxyl radical-generating systems such as the iron-EDTA-stimulated oxidation of xanthine by xanthine oxidase or the iron-EDTA-catalyzed autoxidation of ascorbate. These results indicate that t-butanol cannot be used to distinguish metabolically-linked from non-metabolically-linked actions of ethanol.  相似文献   

10.
Electrophoretic analysis of alcohol oxidase purified from the methylotrophic thermo- and acidotolerant yeastHansenula sp. revealed the presence of two active forms of the enzyme with molar mass 440 kg/mol (major component) and 724 kg/mol (minor component). A subunitM of the enzyme was found to be 72 kg/mol. Two active forms of the enzyme found by electrophoresis seem to be caused by dissociation of the octameric form to the tetramer under alkaline conditions. Studies of alcohol oxidase showed a kinetic variability of the enzyme with respect to itsK m. It is proposed that the variability ofK m is caused by enzyme binding to formaldehyde.  相似文献   

11.
Degradation of microbiodies in the methanolutilizing yeastCandida boidinii was mainly studies by electron microscopical observation. The yeast cells precultured on methanol medium contained five to six microbodies per section and showed high activities of alcohol oxidase, catalase, formaldehyde dehydrogenase and formate dehydrogenase. When the precultured cells were transferred into an ethanol medium the number of microbodies and concomitantly the activities of alcohol oxidase and catalase decreased. After 6 h of cultivation microbodies were hardly detected. Also the activity of alcohol oxidase was not measurable and catalase activity was reduced to one tenth, whereas the activities of formaldehyde dehydrogenase and formate dehydrogenase decreased only to about 70%. Experiments with methanol-grown cells transferred into an ethanol medium without nitrogen source indicated that the inactivation of alcohol oxidase and catalase does not require protein synthesis. However, the reappearance of these enzymes is presumably due to de novo protein synthesis as shown by experiments with cycloheximide.  相似文献   

12.
The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of the two organisms grown under glucose limitation at various dilution rates, suggested that the synthesis of these enzymes is controlled by derepression — represion rather than by induction — repression. Except for alcohol oxidase, the extent to which catabolite repression of the catabolic enzymes was relieved at low dilution rates was similar in both organisms. In Hansenula polymorpha the level of alcohol oxidase in the cells gradually increased with decreasing dilution rate, whilst in Kloeckera sp. 2201 derepression of alcohol oxidase synthesis was only observed at dilution rates below 0.10 h–1 and occurred to a much smaller extent than in Hansenula polymorpha.Derepression of alcohol oxidase and catalase in cells of Hansenula polymorpha was accompanied by synthesis of peroxisomes. Moreover, peroxisomes were degraded with a concurrent loss of alcohol oxidase and catalase activities when excess glucose was introduced into the culture. This process of catabolite inactivation of peroxisomal enzymes did not affect cytoplasmic formaldehyde dehydrogenase.  相似文献   

13.
1. The yeast Candida boidinii was grown on glucose as carbon source with a range of amines and amino acids as nitrogen sources. Cells grown on amines contained elevated activities of catalase. If the amines contained N-methyl groups, formaldehyde dehydrogenase, formate dehydrogenase and S-formylglutathione hydrolase were also elevated in activity compared with cells grown on (NH4)2SO4. 2. Cells grown on all the amines tested, but not those grown on urea or amino acids, contained an oxidase attacking primary amines, which is referred to as methylamine oxidase. In addition, cells grown on some amines contained a second amine oxidase, which is referred to as benzylamine oxidase. 3. Both amine oxidases were purified to near homogeneity. 4. Benzylamine oxidase was considerably more stable at 45 and 50°C than was methylamine oxidase. 5. Both enzymes had a pH optimum in the region of 7.0, and had a considerable number of substrates in common. There were, however, significant differences in the substrate specificity of the two enzymes. The ratio V/Kapp.m increased with increasing n-alkyl carbon chain length for benzylamine oxidase, but decreased for methylamine oxidase. 6. Both enzymes showed similar sensitivity to carbonyl-group reagents, copper-chelating agents and other typical `diamine oxidase inhibitors'. 7. The stoicheiometry for the reaction catalysed by each enzyme was established. 8. The kinetics of methylamine oxidase were examined by varying the methylamine and oxygen concentrations in turn. A non-Ping Pong kinetic pattern with intersecting double-reciprocal plots was obtained, giving Km values of 10μm for O2 and 198μm for methylamine. The significance of this unusual kinetic behaviour is discussed. Similar experiments were not possible with the benzylamine oxidase, because it seemed to have an even lower Km for O2. 9. Both enzymes had similar subunit Mr values of about 80000, but the benzylamine oxidase behaved as if it were usually a dimer, Mr 136000, which under certain conditions aggregated to a tetramer, Mr 288000. Methylamine oxidase was mainly in the form of an octamer, Mr 510000, which gave rise quite readily to dimers of Mr 150000, and on gel filtration behaved as if the Mr was 286000.  相似文献   

14.
The solubilization and subsequent separation of the hepatic microsomal ethanol-oxidizing system from alcohol dehydrogenase and catalase activities by DEAE-cellulose column chromatography is described. Absence of alcohol dehydrogenase in the column eluates exhibiting microsomal ethanol-oxidizing system activity was demonstrated by the failure of NAD+ to promote ethanol oxidation at pH 9.6. Differentiation of the microsomal ethanol-oxidizing system from alcohol dehydrogenase was further shown by the apparent Km for ethanol (7.2 mm, insensitivity of the microsomal ethanol-oxidizing system to the alcohol dehydrogenase inhibitor pyrazole (0.1 mm) and by the failure of added alcohol dehydrogenase to increase the ethanol oxidation. Absence of catalatic activity in these fractions was demonstrated by spectrophotometric and polarographic assay. Differentiation of the microsomal ethanol-oxidizing system from the peroxidatic activity of catalase was shown by the apparent Km for oxygen (8.3 μm), insensitivity of the microsomal ethanol-oxidizing system to the catalase inhibitors azide and cyanide, and by the lack of a H2O2-generating system (glucose-glucose oxidase) to sustain ethanol oxidation in the eluates. The oxidation of ethanol to acetaldehyde by the alcohol dehydrogenase- and catalase-free fractions required NADPH and oxygen and was inhibited by CO. The column eluates showing microsomal ethanol-oxidizing system activity contained cytochrome P-450, NADPH-cytochrome c reductase, and phospholipids and also metabolized aminopyrine, benzphetamine, and aniline.  相似文献   

15.
The incubation of yeast alcohol dehydrogenase with formaldehyde in the presence of NaBH4 methylates lysine residues to form ?N,?N-dimethyl lysine with a concurrent decrease in enzymic activity which is not alleviated by the presence of coenzymes. The modification causes structural change(s) in yeast alcohol dehydrogenase as evidenced by a hyperchromic shift in the uv spectrum, the sensivitity to heat inactivation, the reactivity to sulfhydryl reagents, and a change in Stokes' radius. Kinetic studies indicate that the reduced activity of the methylated enzyme to oxidize alcohols is associated with decreased maximum velocities by retarding the interconversion of the ternary complexes. The catalytic efficiency of the control enzyme to oxidize primary alcohols is affected by the steric interaction which is absent in the methylated enzyme.  相似文献   

16.
A catabolite repression-insensitive mutant of Candida boidinii A5, strain ADU-15, was investigated as to alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production. The mutant strain ADU-15 showed higher cell productivity and higher alcohol oxidase activity when grown on mixed substrates (glucose-methanol), especially with a high concentration of glucose in the medium. Thus, even under substrate (glucose-methanol)-limited chemostat conditions, where the glucose concentration was low, partial derepression of alcohol oxidase by glucose in mutant strain ADU-15 was detected. The chemostat culture conditions with the glucose-methanol medium were optimized for alcohol oxidase production and the production of cells exhibiting the maximum catalytic activity for formaldehyde production, respectively. By means of chemostat culturing on mixed substrates, we improved the alcohol oxidase productivity 5.0-fold and the productivity of cells exhibiting the maximum catalytic activity for formaldehyde production 3.8-fold, in comparison with the parent strain chemostat cultured with methanol as the single substrate.  相似文献   

17.
The TPNH- and O2-dependent drug hydroxylation system of liver microsomes has been studied using normal rats and rats in which the drug-hydroxylating activity has been enhanced by repeated injections of phenobarbital. The oxidative demethylation of aminopyrine is employed as an assay. Optimal conditions for the assay with regard to the concentrations of TPNH and aminopyrine are established. TPN inhibits the reaction in a competitive manner, similarly to its effect on the microsomal TPNH-cytochrome c reductase. Drug hydroxylation, but not the "TPNH oxidase," TPNH-cytochrome c, -2,6-dichlorophenolindophenol, or -neotetrazolium reductase reaction, or the TPNH-dependent lipid peroxidation, is blocked by carbon monoxide. Microsomes from phenobarbital-treated rats exhibit increased activities of the various TPNH-linked reductase reactions, parallel to the increased drug hydroxylation activity, whereas the "TPNH oxidase" activity does not change appreciably. Measurements with microsomes from drug-treated animals reveal a 1:1:1 stoichiometry of aminopyrine-dependent oxygen uptake, TPNH oxidation, and formaldehyde formation. Attempts to solubilize the drug-hydroxylating enzyme system are also presented. It is concluded that the drug-hydroxylating enzyme system involves the microsomal TPNH-cytochrome c reductase and CO-binding pigment, and a hypothetic reaction scheme accounting for the data presented is proposed.  相似文献   

18.
Bovine heart cytochrome c oxidase and rat liver mitochondria were crosslinked in the presence and absence of cytochrome c. Biimidate treatment of purified cytochrome oxidase, which results in the crosslinkage of all of the oxidase protomers except subunit I when ? 20% of the free amines are modified, inhibits ascorbate-N,N,N′,N′-tetramethyl-p-phenylene diamine oxidase activity. Intermolecular crosslinking of cytochrome oxidase molecules, which results in the formation of large enzyme aggregates displaying rotational correlation times ? 1 ms, does not affect oxidase activity. Crosslinking of mitochondria covalently binds the cytochrome bc1 and aa3 complexes to cytochrome c, and inhibits steady-state oxidase activity. Addition of cytochrome c to purified cytochrome oxidase or to cytochrome c-depleted mitoplasts increases this inhibition slightly. Cytochrome c oligomers act as competitive inhibitors of native cytochrome c; however, crosslinking of cytochrome c to cytochrome c-depleted mitoplasts or purified cytochrome oxidase results in a catalytically inactive complex. These experiments indicate that cytochrome c oxidase subunit interactions are required for activity, and that cytochrome c mobility may be essential for electron transport between cytochrome c reductase and oxidase.  相似文献   

19.
N-Demethylation of benzphetamine and p-chloro-N-methylaniline measured in the presence and absence of specific antibodies to NADPH-cytochrome c (P-450) reductase demonstrates that part of the formaldehyde formed from the sec-N-methylamine arises from non-cytochrome P-450-dependent oxidation catalyzed by pig, hamster, and rat liver microsomes. The additional formaldehyde formed can be inhibited by adding methimazole, a non-formaldehyde-producing substrate specific for the microsomal mixed-function amine oxidase, to the reaction media. Purified amine oxidase catalyzes the oxidation of sec-N-methylamines to sec-N-methylhydroxylamines that, upon oxidation and hydrolysis, yield formaldehyde. Approximately 65, 40, and 15% of total formaldehyde is formed by this route during oxidation of p-chloro-N-methylaniline catalyzed by pig, hamster, and rat liver microsomes, respectively.  相似文献   

20.
Cytochrome cbb3-type oxidases are members of the heme copper oxidase superfamily and are composed of four subunits. CcoN contains the heme b-CuB binuclear center where oxygen is reduced, while CcoP and CcoO are membrane-bound c-type cytochromes thought to channel electrons from the donor cytochrome into the binuclear center. Like many other bacterial members of this superfamily, the cytochrome cbb3-type oxidase contains a fourth, non-cofactor-containing subunit, which is termed CcoQ. In the present study, we analyzed the role of CcoQ on the stability and activity of Rhodobacter capsulatus cbb3-type oxidase. Our data showed that CcoQ is a single-spanning membrane protein with a Nout-Cin topology. In the absence of CcoQ, cbb3-type oxidase activity is significantly reduced, irrespective of the growth conditions. Blue native polyacrylamide gel electrophoresis analyses revealed that the lack of CcoQ specifically impaired the stable recruitment of CcoP into the cbb3-type oxidase complex. This suggested a specific CcoQ-CcoP interaction, which was confirmed by chemical cross-linking. Collectively, our data demonstrated that in R. capsulatus CcoQ was required for optimal cbb3-type oxidase activity because it stabilized the interaction of CcoP with the CcoNO core complex, leading subsequently to the formation of the active 230-kDa cbb3-type oxidase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号