首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When incubated in Winge medium, protoplasts from Trichoderma viride obtained by treatment with Micromonospora chalcea or Streptomyces venezuelae RA lytic systems first synthesized an aberrant wall, different from the normal one; it was aseptate, larger and irregular in size and length. They then regenerated a new wall, similar to the original one from which they were liberated. Analysis showed that the wall polymers were mainly beta-(1-3) glucan, beta-(1-6) glucan and chitin in the normal walls, whereas chitin was absent in aberrant tubes. These results are discussed below together with electron micrographs of aberrant and normal walls.  相似文献   

2.
Enrico Cabib 《Eukaryotic cell》2009,8(11):1626-1636
Previous work, using solubilization of yeast cell walls by carboxymethylation, before or after digestion with β(1-3)- or β(1-6)glucanase, followed by size chromatography, showed that the transglycosylases Crh1p and Crh2p/Utr2p were redundantly required for the attachment of chitin to β(1-6)glucan. With this technique, crh1Δ crh2Δ mutants still appeared to contain a substantial percentage of chitin linked to β(1-3)glucan. Two novel procedures have now been developed for the analysis of polysaccharide cross-links in the cell wall. One is based on the affinity of curdlan, a β(1-3)glucan, for β(1-3)glucan chains in carboxymethylated cell walls. The other consists of in situ deacetylation of cell wall chitin, generating chitosan, which can be extracted with acetic acid, either directly (free chitosan) or after digestion with different glucanases (bound chitosan). Both methodologies indicated that all of the chitin in crh1Δ crh2Δ strains is free. Reexamination of the previously used procedure revealed that the β(1-3)glucanase preparation used (zymolyase) is contaminated with a small amount of endochitinase, which caused erroneous results with the double mutant. After removing the chitinase from the zymolyase, all three procedures gave coincident results. Therefore, Crh1p and Crh2p catalyze the transfer of chitin to both β(1-3)- and β(1-6)glucan, and the biosynthetic mechanism for all chitin cross-links in the cell wall has been established.The fungal cell wall protects the cell against internal turgor pressure and external mechanical injury. To fulfill these functions, it must be endowed with a resilient structure. Presumably, the cell wall strength is largely due to the cross-links that bind together its components, mainly polysaccharides, giving rise to a tightly knit mesh (6, 11-13). Interestingly, the cross-links must be created outside the plasma membrane, because most of the polysaccharides are extruded as they are synthesized at the membrane; therefore, they do not exist inside the cell. This posits a thermodynamic problem, because there are no obvious sources of energy in the periplasmic space. About 20 years ago we proposed that the free energy may come from existing bonds in the polysaccharide chains and that the new cross-links may be originated by transglycosylation, thus creating a new linkage for each one that is broken (5).Ascertaining the mechanism of cross-link formation seemed a worthwhile endeavor, both because of the theoretical implications and because the cell wall is a proven target for antifungal compounds; therefore, more knowledge about its synthesis can be of practical interest. For this type of investigation to proceed, it was necessary to devise some method for the quantitative analysis of cell wall cross-links. We developed such a procedure for the evaluation of the proportion of cell wall chitin that is free or bound to β(1-3)- or β(1-6)glucan (4). In this methodology, chitin was specifically labeled in vivo with [14C]glucosamine; cell walls were isolated, and their proteins were eliminated by alkali treatment. The insoluble residue was solubilized by carboxymethylation and analyzed by size fractionation chromatography. By treating the cell walls with different glucanases before carboxymethylation and comparing the chromatographic profiles, we were able to determine the amount of chitin bound to the different glucans, as well as the fraction that was free (4). Armed with this procedure, we could now analyze the cell wall of different mutants that appeared to be candidates for cross-links defects. In this way we found that the two putative transglycosylases Crh1p and Crh2p were redundantly required for the formation of the chitin-β(1-6)glucan linkage. A double mutant crh1Δ crh2Δ had no chitin attached to β(1-6)glucan, although it still contained apparently normal amounts of chitin-β(1-3)glucan complex (7). Further work supported the notion that Crh1p and Crh2p function as transglycosylases, transferring portions of chitin chains to glucan (8). This confirmed our earlier hypothesis.With the initial intention of finding easier and faster methods, I devised two novel procedures for cell wall analysis. One is based on the affinity between β(1-3)glucan chains, the other on the conversion of chitin in situ into its deacetylated product, chitosan, followed by extraction of the chitosan with acetic acid before or after treatment with specific glucanases. With a wild-type strain, both procedures gave similar results to those of the carboxymethylation-chromatography technique. However, in the double mutant crh1Δ crh2Δ all of the chitin appeared to be free with both new methods. Further investigation showed that the older procedure led to erroneous results for the double mutant, because of the presence of a small amount of chitinase in the β(1-3)glucanase preparation used. After reconciling the results, I conclude that Crh1p and Crh2p are necessary for the formation of cross-links between chitin and either β(1-6) or β(1-3)glucan.  相似文献   

3.
Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of β(1-3)glucan, may help to suppress cell wall growth at the neck by competing with β(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to β(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, β(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the β(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the β(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with β(1-3)glucan.  相似文献   

4.
Exhaustive extraction of the cell walls of Aspergillus niger with 10% NaOH solution leaves an alkali-resistant residue containing chitin and glucan as the major components. The glucan in this residue comprises 58.7% of the total cell wall glucan and was characterized by permethylation, and identification of the resulting O-methyl-D-glucoses obtained after hydrolysis by gas-liquid chromagtography and mass spectrometry of the derived partially acetylated, partially methylated, [1-2H]alditols. The glucan was separated from the chitin by acetylation of the alkali-resistance material, a procedure which separates a large portion of the total glucan as a chloroformsoluble acetate, abd by treatment of the alkali-insoluble residue with nitrous acid, a procedure which was found to render the complex soluble in dimethylsulfoxide and amenable, therefore, to permethylation. The data collected suggests that the preparation is an essentially linear glucan containing 85–95% 1 → 3 linkages and 10–15% 1 → 4 linkages. An analysis of the glycosidic linkages using NMR spectroscopy indicate that both α and β linkages are present in the ratio of 4:1. An identical glucan appears to be present in the cell walls of Penicillium chrysogenum as well as the spore cell walls of both organisms, as evidenced by methylation studies.  相似文献   

5.
Crude glycerol from the biodiesel industry was used as carbon source for high cell density fed-batch cultivation of Pichia pastoris aiming at producing a chitin–glucan complex (CGC). More than 100 g L?1 biomass was obtained in less than 48 h. The yield of biomass on a glycerol basis was 0.55 g g?1 during the batch phase and 0.63 g g?1 during the fed-batch phase. The chitin–glucan complex was recovered from the yeast cell wall by hot alkaline extraction. CGC content in the cell wall was found to be relatively constant throughout the cultivation (18–26%) with a volumetric productivity of 1.28 g L?1 h?1 at the end of the fed-batch phase. The molar ratio of chitin:β-glucan in the extracted biopolymer was 16:84, close to other CGC extracted from Aspergillus biomass. The extracted polymer was characterized by Differential Scanning Calorimetry (DCS) and solid-state Nuclear Magnetic Resonance (NMR) spectroscopy and compared with commercial biopolymers, namely, crab shell chitin and/or chitosan, algal β-glucan (laminarin) and fungal chitin–glucan complex (kiOsmetine).  相似文献   

6.
In fungi, cell wall plays an important role in growth and development. Major macromolecular constituents of the aspergilli cell wall are glucan, chitin, and protein. We examined the chemical composition and structure of the Aspergillus nidulans hyphal wall surface by an atomic force microscope (AFM). To determine the composition of the cell wall surface, the adhesion forces of commercially available β-glucan, chitin, and various proteins were compared to those of corresponding fractions prepared from the hyphal wall. In both setups, the adhesion forces of β-glucan, chitin, and protein were 25–50, 1000–3000, and 125–300 nN, respectively. Adhesion force analysis demonstrated that the cell surface of the apical tip region might contain primarily chitin and β-glucan and relatively a little protein. This analysis also showed the chemical composition of the hyphal surface of the mid-region would be different from that of the apical region. Morphological images obtained by the tapping mode of AFM revealed that the hyphal tip surface has moderate roughness.  相似文献   

7.
Protoplasts of Pyricularia oryzae P2 formed a cell wall and eventually reverted to a normal mycelial form in liquid medium. The process of the formation of two main cell-wall components, glucan and chitin, was studied from the onset of regeneration. Analyses using radioactive sugars suggested that chitin synthesis started after a short lag but glucan formation was delayed. Chemical analysis of regenerating cell walls using gas-liquid chromatography indicated clearly that chitin formation precedes glucan formation.  相似文献   

8.
9.
In yeast, chitin is laid down at three locations: a ring at the mother-bud neck, the primary septum and, after cytokinesis, the cell wall of the daughter cell. Some of the chitin is free and the remainder attached to beta(1-3)glucan or beta(1-6)glucan. We recently reported that the chitin ring contributes to the prevention of growth at the mother-bud neck and hypothesized that this inhibition is achieved by a preferential binding of chitin to beta(1-3)glucan at that site. Here, we devised a novel strategy for the analysis of chitin cross-links in [14C]glucosamine-labeled cell walls, involving solubilization in water of alkali-treated walls by carboxymethylation. Intact cell walls or their digestion products with beta(1-3)glucanase or beta(1-6)glucanase were carboxymethylated and fractionated on size columns, and the percentage of chitin bound to different polysaccharides was calculated. Chitin dispersed in the wall was labeled in maturing unbudded cells and that of the ring in early budding cells. The former was mostly attached to beta(1-6)glucan and the latter to beta(1-3)glucan. This confirmed our hypothesis and indicated that the cell has mechanisms to attach chitin, a water-insoluble substance, synthesized here through chitin synthase III, to different acceptors, depending on location. In contrast, most of the chitin synthase II-dependent chitin of the primary septum was free, with the remainder linked to beta(1-3)glucan.  相似文献   

10.
Neurospora crassa contains all four enzymes for the synthesis of DHN (dihydroxynaphthalene), the substrate for melanin formation. We show that the DHN melanin pathway functions during N. crassa female development to generate melanized peridium and ascospore cell walls. N. crassa contains one polyketide synthase (PER-1), two polyketide hydrolases (PKH-1 and PKH-2), two THN (tetrahydroxynaphthalene) reductases (PKR-1 and PKR-2), and one scytalone dehydratase (SCY-1). We show that the PER-1, PKH-1, PKR-1 and SCY-1 are required for ascospoer melanization. We also identified the laccase that functions in the conversion of DHN into melanin via a free radical oxidative polymerization reaction, and have named the gene lacm-1 (laccase for melanin formation-1). In maturing perithecia, we show that LACM-1 is localized to the peridium cell wall space while the DHN pathway enzymes are localized to intracellular vesicles. We present a model for melanin formation in which melanin is formed within the cell wall space and the cell wall structure is similar to “reinforced concrete” with the cell wall glucan, chitin, and glycoproteins encased within the melanin polymer. This arrangement provides for a very strong and resilient cell wall and protects the glucan/chitin/glycoprotein matrix from digestion from enzymes and damage from free radicals.  相似文献   

11.
The nets produced by protoplasts of Saccharomyces cerevisiae in liquid culture media consisted of microfibrils about 20 nm wide, forming flat, fairly straight bundles of variable width and length, up to about 500 nm wide and 4 mum long. Ends of microfibrils were seldom found. They were not attacked by chitinase or dilute acids, but the net structure disappeared in 3% (w/v) NaOH, leaving about 60% dry wt of the nets as partly microfibrillar clusters. The X-ray powder pattern from the nets, in contrast to that from normal walls, exhibited a set of well-defined rings which identified two micro-crystalline constituents: chitin and unbranched chains of beta-(1 leads to 3)-linked D-glucose residues. These latter were the alkali-soluble fraction. The X-ray diagram of the glucan, corresponding to that of paramylon, indicated an in vivo crystal modification. Up to 15% dry wt was chitin which was found de novo by the protoplasts. A fine net structure of microfibrils about 7-5 to 10 nm thick with meshes about 20 to 60 nm wide was demonstrated in normal walls, forming the entire inner layer and consisting mainly of yeast glucan. This glucan and chitin were only slightly crystalline in these walls. The features of the glucan and chitin of the protoplast nets indicate that enzymes active in normal wall formation were differentially removed or inactivated by the liquid medium.  相似文献   

12.
Aronson , Jerome M., and Leonard Machlis . (U. California, Berkeley.) The chemical composition of the hyphal walls of the fungus Allomyees. Amer. Jour. Bot. 46(4): 292–300. Illus. 1959.—The hyphal walls of Allomyces macrogynus were isloated by both alkaline digestion methods and by sonic oscillation. Both types of preparations showed the walls to consist of chitin, glucan, and ash. In addition, the mechanically isolated walls contained a protein fraction, the properties and significance of which were not determined. Hemicellulose-type polysaccharides, pectic substances, ether soluble lipids, and constituents giving rise to 3–0-α-earboxyethyl hexosamine were not found to be present in the walls. The walls of plants grown for 60–70 hr. under the prescribed conditions contain approximately 60% chitin, 15% glucan, 10% ash, and 10% protein intimately associated with the walls. The percentage of wall material in a mycelium, as well as the percentage of chitin in the walls, increases with the chronological age of the mycelium. These percentages were not, however, affected by variations in the composition of the nutrient medium. The chitin in the walls could be hydrolyzed in the presence of chitinase; lysozyme, however, had no detectable effect on the walls.  相似文献   

13.
Cellulin granules, the polysaccharide inclusions found uniquely in oomycetous fungi of the order Leptomitales, were isolated from Apodachlya sp. The granules were prepared free of cell wall and cytoplasmic contaminants. Biochemical analyses and X-ray diffraction studies demonstrated that the granules were composed of 60% chitin and 39% glucan consisting of β-1,3-and β-1,6-linked glucose units. A protein content of only 0.1% was attributed to an insignificant amount of cytoplasmic contamination. Isolated granules and those in situ showed no apparent differences in their microscopic form.  相似文献   

14.
《Experimental mycology》1986,10(3):228-242
Cell wall structure and macromolecular organization of the various growth forms ofParacoccidioides brasiliensis were investigated using chemical, enzymatic, and cytochemical methods. The wall of yeast-like cells was not sensitive to periodic acid and β(1 → 3) glucanase treatments, but bound calcofluor suggesting that it is composed of an α(1 → 3) glucan and of chitin. The fibrillar outer layer of bud cell initials and of abscision areas, were characterized by the presence of a strongly periodic acid- and concanavalin A-reactive substance that was sensitive to the lytic action of protease, presumably composed of mannan and proteins. The outermost layer of the mycelium was sensitive to protease, and periodic acid and peanut agglutinin positive indicating that it was composed of galactomannan and protein. The inner layer is mainly composed of a β(1 → 3), (1 → 6) glucan (sensitive to snail enzyme but not to an exo β(1 → 3) glucanase), and chitin. Septa were brightly fluorescent with calcofluor. Our results are compared with models previously proposed by other authors.  相似文献   

15.
Cysts of Giardia lamblia and Entamoeba histolytica and oocysts of Toxoplasma gondii and Cryptosporidium parvum are the infectious and sometimes diagnostic forms of these parasites. To discover the structural components of cyst and oocyst walls, we have developed strategies based upon a few simple assumptions. Briefly, the most abundant wall proteins are identified by monoclonal antibodies or mass spectrometry. Structural components include a sugar polysaccharide (chitin for Entamoeba, β-1,3-linked glucose for Toxoplasma, and β-1,3-linked GalNAc for Giardia) and/or acid-fast lipids (Toxoplasma and Cryptosporidium). Because Entamoeba cysts and Toxoplasma oocysts are difficult to obtain, studies of walls of nonhuman pathogens (E. invadens and Eimeria, respectively) accelerate discovery. Biochemical methods to dissect fungal walls work well for cyst and oocyst walls, although the results are often unexpected. For example, echinocandins, which inhibit glucan synthases and kill fungi, arrest the development of oocyst walls and block their release into the intestinal lumen. Candida walls are coated with mannans, while Entamoeba cysts are coated in a dextran-like glucose polymer. Models for cyst and oocyst walls derive from their structural components and organization within the wall. Cyst walls are composed of chitin fibrils and lectins that bind chitin (Entamoeba) or fibrils of the β-1,3-GalNAc polymer and lectins that bind the polymer (Giardia). Oocyst walls of Toxoplasma have two distinct layers that resemble those of fungi (β-1,3-glucan in the inner layer) or mycobacteria (acid-fast lipids in the outer layer). Oocyst walls of Cryptosporidium have a rigid bilayer of acid-fast lipids and inner layer of oocyst wall proteins.  相似文献   

16.
Structural features of noncellulosic β-d-glucans of Zea mays, Hordeum vulgare, Triticum vulgare, Secale cereale, and Sorghum bicolor were compared. Treatment of cell walls derived from these species with specific Bacillus subtilis or Rhizopus glucanases yields virtually identical profiles upon Bio-Gel P-2 fractionation of the liberated oligosaccharides. The two predominant reaction products, a trisaccharide and tetrasaccharide, were identified as 3-O-β-cellobiosyl-d-glucose and 3-O-β-cellotriosyl-d-glucose respectively by virtue of the specificity of these enzymes and by paper chromatography and electrophoresis. The similarity of the reaction product profiles indicates a rather regular repeating sequence in all β-d-glucans examined. The ratios of 3-O-β-cellobiosyl-d-glucose to 3-O-β-cellotriosyl-d-glucose indicates that 30.4–30.9% of the β-glucosyl linkages in the intact molecule are 1 → 3. The yields of wall glucan as estimated from the quantity of oligosaccharides released, range from 41 μg/mg wall in Hordeum to 97 μg/mg wall from Sorghum.  相似文献   

17.
Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50–60% of the total mass of the wall. X-ray diffraction studies showed the presence of α-1,3-glucan in the alkali-soluble cell wall fraction and of β-1,3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan.  相似文献   

18.
A morphological mutant of Neurospora crassa, which showed great changes in cell wall β-glucan structures, was obtained. The mutant lacked spore-forming ability. Chemical analysis indicated that the mutant cell walls had more carbohydrates and less proteins than the wild type. In the structural polymers of cell walls, heteroglycan and chitin were not apparently changed in their sugar composition and structures. On the other hand, the alkali-soluble β-glucan of this mutant showed significant changes in the chemical structure, particularly, the number and length of branches. The mutant glucan had about 2.5 times as many branches as that from wild type and the number of 1,3-linked glucose residues was greatly reduced.  相似文献   

19.
20.
Post-harvest changes in the biochemical composition of the mushroom were studied. Non-structural polysaccharide was found at levels greater than 10% dry wt in the fresh mushroom. After 4 days storage, the level had decreased to below 5% dry weight. The polysaccharide appeared to contain only glucose residues joined by α-1,4 and α-1,6 linkages. The chitin content of cell walls increased by ca 50% during 4 days storage, while cell wall glucan decreased. There was a large increase in urea content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号