首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel benzimidazolium salts were synthesized as N-heterocyclic carbene (NHC) precursors, these NHC precursors were metallated with Ag2O in dichloromethane at room temperature to give novel silver(I)–NHC complexes. Structures of these benzimidazolium salts and silver(I)–NHC complexes were characterized on the basis of elemental analysis, 1H NMR, 13C NMR, IR and LC–MS spectroscopic techniques. A series of benzimidazolium salts and silver(I)–NHC complexes were tested against standard bacterial strains: Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and the fungal strains: Candida albicans and Candida tropicalis. The results showed that benzimidazolium salts inhibited the growth of all bacteria and fungi strains and all silver(I)–NHC complexes performed good activities against different microorganisms.  相似文献   

2.
Yuasa HJ  Ushigoe A  Ball HJ 《Gene》2011,485(1):22-31
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD+). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD+, like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (Km, Vmax and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD+) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking the kynU gene suggests its IDO has a function similar to eukaryotic enzymes.  相似文献   

3.
4.
Tomato bacterial wilt caused by Ralstonia solanacearum is one of the most destructive soil-borne diseases. Many strategies have been taken to improve soil suppressiveness against this destructive disease, but limited success has been achieved. In this study, a novel bioorganic fertilizer revealed a higher suppressive ability against bacterial wilt compared with several soil management methods in the field over four growing seasons from March 2011 to July 2013. The application of the bioorganic fertilizer significantly (P<0.05) reduced disease incidence of tomato and increased fruit yields in four independent trials. The association among the level of disease incidence, soil physicochemical and biological properties was investigated. The soil treated with the bioorganic fertilizer increased soil pH value, electric conductivity, organic carbon, NH4 +-N, NO3 --N and available K content, microbial activities and microbial biomass carbon content, which were positively related with soil suppressiveness. Bacterial and actinomycete populations assessed using classical plate counts were highest, whereas R. solanacearum and fungal populations were lowest in soil applied with the bioorganic fertilizer. Microbial community diversity and richness were assessed using denaturing gel gradient electrophoresis profile analysis. The soil treated with the bioorganic fertilizer exhibited higher bacterial community diversity but lower fungal community diversity. Redundancy analysis showed that bacterial community diversity and richness negatively related with bacterial wilt suppressiveness, while fungal community richness positively correlated with R. solanacearum population. We concluded that the alteration of soil physicochemical and biological properties in soil treated with the bioorganic fertilizer induced the soil suppressiveness against tomato bacterial wilt.  相似文献   

5.
13C metabolism analysis of a microbial community is often hindered by the time-consuming and complicated separation procedure for a single species. However, a “reporter protein,” produced uniquely by one cell type, retains 13C fingerprint information in microbial consortia. This study describes the use of photosystem I (PSI), a multi-subunit protein complex universally found in oxygenic phototrophs, as a reliable reporter protein to probe microalgal metabolism (i.e., cyanobacterium Synechocystis sp. PCC 6803) in a mixed culture with heterotrophic bacteria (i.e., Escherichia coli). We demonstrate that efficient purification of PSI and subsequent 13C-based amino acid analyses may decipher photomixotrophic metabolism of Synechocystis 6803 in the coculture. This study also indicates that a supplement of NaHCO3 at high concentration could significantly improve the robustness of cyanobacterial growth against bacterial contamination.  相似文献   

6.
KILLED suspensions of Corynebacterium parvum have been shown to stimulate the lymphoreticular system1 and to possess adjuvant activity2,3. Pre-treatment of animals with C. parvum increases their resistance to tumour cell challenge4,5 and to protozoal infection6. In view of these properties it seemed probable that C. parvum might induce protection against bacterial challenge. We therefore examined the effect of C. parvum treatment on the course of three bacterial infections in W-Swiss mice. The strain of C. parvum used was supplied by Professor M. Raynaud of the Pasteur Institute and has been given the Wellcome Culture Collection number CN 6134.  相似文献   

7.
1,4-Disubstituted 1,2,3-triazole derivatives of 2H-chromene-3-tetrazoles synthesized regioselectively by copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) click reaction were characterized by 1HNMR, 13C NMR, IR, and mass spectral data. These derivatives were screened for in vitro antioxidant activity using DPPH radical, H2O2 scavenging, and iron chelating activity methods and also evaluated for in vitro antibacterial activities against E. coli and S. aureus bacterial strains. The MIC and IC50 values for all these compounds were found to match the docking scores and relevant binding energies with the receptor active sites. These results allows one to consider the compounds as leads for a new generation of antioxidant and antibacterial agents.  相似文献   

8.
Two anodic isoenzymes of glucose-6-phosphate dehydrogenase (G6PDH) were isolated from tobacco suspension culture WR-132, utilizing fractional ammonium sulfate precipitation and DEAE-cellulose chromatography. The pH optimum was 9.0 for isoenzyme G6PDH I and 8.0–8.3 for G6PDH IV. Isoenzyme G6PDH I exhibited Michaelis-Menten kinetics for both substrates, G6P and NADP+, with Km's of 0.22 mM and 0.06 mM, respectively. G6PDH IV exhibited Michaelis-Menten kinetics for G6P with a Km of 0.31 mM. The NADP+ double reciprocal plot showed an abrupt transition between two linear sections. This transition corresponds to an abrupt increase in the apparent Km and Vmax values with increasing NADP+, denoting negative cooperativity. The two Km's for high and low NADP+ concentrations were 0.06 mM and 0.015 mM, respectively. MWs of the isoenzymes as determined by SDS disc gel electrophoresis were 85 000–91 000 for G6PDH I and 54 000–59 000 for G6PDH IV. Gel filtration chromatography on Sephadex G-150 showed MW's of 91 000 for G6PDH I and 115 000 for G6PDH IV. A probable dimeric structure for IV is suggested, with two NADP+ binding sites.  相似文献   

9.
The bacterial strain MM-B16, which showed strong antifungal and antioomycete activity against some plant pathogens, was isolated from a mountain forest soil in Korea. Based on the physiological and biochemical characteristics and 16S ribosomal DNA sequence analysis, the bacterial strain MM-B16 was identical to Pseudomonas fluorescens. An antibiotic active against Colletotrichum orbiculare and Phytophthora capsici in vitro and in vivo was isolated from the culture filtrates of P. fluorescens strain MM-B16 using various chromatographic procedures. The molecular formula of the antibiotic was deduced to be C10H11NO2S (M+, m/z 209.0513) by analysis of electron impact mass spectral data. Based on the nuclear magnetic resonance and infrared spectral data, the antibiotic was confirmed to have the structure of a thiazoline derivative, aerugine [4-hydroxymethyl-2-(2-hydroxyphenyl)-2-thiazoline]. C. orbiculare, P. capsici, and Pythium ultimum were most sensitive to aerugine (MICs for these organisms were approximately 10 μg ml−1). However, no antimicrobial activity was found against yeasts and bacteria even at concentrations of more than 100 μg ml−1. Treatment with aerugine exhibited a significantly high protective activity against development of phytophthora disease on pepper and anthracnose on cucumber. However, the control efficacy of aerugine against the diseases was in general somewhat less than that of the commercial fungicides metalaxyl and chlorothalonil. This is the first study to isolate aerugine from P. fluorescens and demonstrate its in vitro and in vivo antifungal and antioomycete activities against C. orbiculare and P. capsici.  相似文献   

10.
A series of novel schiff base derivatives (H1H20) containing pyrazine and triazole moiety have been designed and synthesized, and their biological activities were also evaluated as potential inhibitors of β-ketoacyl-acyl carrier protein synthase III (FabH). These compounds were assayed for antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Bacillus amyloliquefaciens and selected compounds among them were tested for their Escherichia coli FabH inhibitory activity. Based on the biological data, compound H17 showed the most potent antibacterial activity with MIC values of 0.39–1.56 μg/mL against the tested bacterial strains and exhibited the most potent E. coli FabH inhibitory activity with IC50 of 5.2 μM, being better than the positive control Kanamycin B with IC50 of 6.3 μM. Furthermore, docking simulation was performed to position compound H17 into the E. coli FabH active site to determine the probable binding conformation. This study indicated that compound H17 has demonstrated significant E. coli FabH inhibitory activity as a potential antibacterial agent and provides valuable information for the design of E. coli FabH inhibitors.  相似文献   

11.
12.
A series of new silver(I) saccharinate (sac) complexes, [Ag2(sac)2(μ-dppm)H2O]·H2O (1), {[Ag2(μ-sac)2(μ-dppe)]·3H2O·CH2Cl2} n (2), [Ag2(μ-sac)2(μ-dppp)] n (3), and [Ag(sac)(μ-dppb)] n (4) [dppm is 1,1-bis(diphenylphosphino)methane, dppe is 1,2-bis(diphenylphosphino)ethane, dppp is 1,3-bis(diphenylphosphino)propane, and dppb is 1,4-bis(diphenylphosphino)butane], have been synthesized and characterized by C, H, N elemental analysis, IR spectroscopy, 1H NMR, 13C NMR, and 31P NMR spectroscopy, electrospray ionization mass spectrometry, and thermogravimetry–differential thermal analysis. Single-crystal X-ray studies show that the diphosphanes act as bridging ligands to yield a dinuclear complex (1) and one-dimensional coordination polymers (2 and 4), whereas the sac ligand adopts a μ2-N/O bridging mode in 2, and is N-coordinated in 1 and 4. The interaction of the silver(I) complexes with fish sperm DNA was investigated using UV–vis spectroscopy, fluorescence spectroscopy, and agarose gel electrophoresis. The binding studies indicate that the silver(I) complexes can interact with fish sperm DNA through intercalation, and complexes 1 and 3 have the highest binding affinity. The gel electrophoresis assay further confirms the binding of the complexes with the pBR322 plasmid DNA. The minimum inhibitory concentrations of the complexes indicate that complex 1 exhibits very high antibacterial activity against standard bacterial strains of Escherichia coli, Salmonella typhimurium, and Staphylococcus aureus, being much higher than those of AgNO3, silver sulfadiazine, ciprofloxacin, and gentamicin. Moreover, complexes 13 exhibit very high cytotoxic activity against A549 and MCF-7 cancer cell lines, compared with AgNO3 and cisplatin. The bacterial and cell growth inhibitions of the silver(I) complexes are closely related to their DNA binding affinities.  相似文献   

13.
Cobalt, nickel, copper and zinc coordination compounds of two thiosemicarbazones with general composition ML2 (L: monodeprotonated ligand corresponding to 2-acetyl-γ-butyrolactone thiosemicarbazone, HL1, and 2-furancarbaldehyde thiosemicarbazone, HL2) and also complexes with general composition MCl2(HL2) were synthesized (except [NiCl2(HL2)] and [Co(L2)2]). The interaction of CuCl2 with HL2 gave [CuCl(HL2)], a copper(I) complex. The ligands and metal complexes were characterized by IR, 1H and 13C NMR spectroscopy, and magnetic susceptibility measurements. The crystal structure of [Ni(L2)2] · 2dmso was determined and a trans-square planar coordination of the two κ2-N,S chelate rings forming polymeric strips through H-bonds with dmso was observed. Actually, in all the reported complexes both ligands behaved as κ2-N,S chelates, except in the case of [Co(L1)2] in which HL1 is tridentate κ3-N,S,O. The antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The copper complexes of HL2 were the most active against all strains, including dermatophytes and phytopathogenic fungi. Most of the studied compounds, especially [Cu(L1)2], presented good activity against Haemophilus influenzae, a very harmful bacterium to humans.  相似文献   

14.
The abundance and activity of methane-oxidizing bacteria (MOB) in the water column were investigated in three lakes with different contents of nutrients and humic substances. The abundance of MOB was determined by analysis of group-specific phospholipid fatty acids from type I and type II MOB, and in situ activity was measured with a 14CH4 transformation method. The fatty acid analyses indicated that type I MOB most similar to species of Methylomonas, Methylomicrobium, and Methylosarcina made a substantial contribution (up to 41%) to the total bacterial biomass, whereas fatty acids from type II MOB generally had very low concentrations. The MOB biomass and oxidation activity were positively correlated and were highest in the hypo- and metalimnion during summer stratification, whereas under ice during winter, maxima occurred close to the sediments. The methanotroph biomass-specific oxidation rate (V) ranged from 0.001 to 2.77 mg CH4-C mg−1 C day−1 and was positively correlated with methane concentration, suggesting that methane supply largely determined the activity and biomass distribution of MOB. Our results demonstrate that type I MOB often are a large component of pelagic bacterial communities in temperate lakes. They represent a potentially important pathway for reentry of carbon and energy into pelagic food webs that would otherwise be lost as evasion of CH4.  相似文献   

15.
The kinetic properties of an E232Q variant of the xanthine dehydrogenase from Rhodobacter capsulatus have been examined to ascertain whether Glu232 in wild-type enzyme is protonated or unprotonated in the course of catalysis at neutral pH. We find that kred, the limiting rate constant for reduction at high [xanthine], is significantly compromised in the variant, a result that is inconsistent with Glu232 being neutral in the active site of the wild-type enzyme. A comparison of the pH dependence of both kred and kred/Kd from reductive half-reaction experiments between wild-type and enzyme and the E232Q variant suggests that the ionized Glu232 of wild-type enzyme plays an important role in catalysis by discriminating against the monoanionic form of substrate, effectively increasing the pKa of substrate by two pH units and ensuring that at physiological pH the neutral form of substrate predominates in the Michaelis complex. A kinetic isotope study of the wild-type R. capsulatus enzyme indicates that, as previously determined for the bovine and chicken enzymes, product release is principally rate-limiting in catalysis. The disparity in rate constants for the chemical step of the reaction and product release, however, is not as great in the bacterial enzyme as compared with the vertebrate forms. The results indicate that the bacterial and bovine enzymes catalyze the chemical step of the reaction to the same degree and that the faster turnover observed with the bacterial enzyme is due to a faster rate constant for product release than is seen with the vertebrate enzyme.  相似文献   

16.
A series of new sulfonamides was prepared starting from 2-oxo-N′-(4-sulfamoylphenyl)-propanehydrazonoyl chloride, a sulfanilamide derivative, which was reacted with aroylhydrazides, amines, or thiols. A library of derivatives incorporating aroylhydrazone, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenyl-methylene)-1,3,4-thiadiazol-3(2H)-yl moieties was thus synthesized. The new compounds were investigated as inhibitors of four α-carbonic anhydrases (CAs, EC 4.2.1.1), the human (h) isoforms hCA I and II, and the bacterial ones recently isolated from the extremophilic bacteria Sulfurihydrogenibium yellostonense (SspCA) and Sulfurihydrogenibium azorense (SazCA). Low nanomolar activity was observed against hCA II (KIs of 0.56–17.1 nM) whereas hCA I was less inhibited by these compounds (KIs of 86.4 nM–32.8 μM). The bacterial CAs were also effectively inhibited by these derivatives (KIs in the range of 0.77–234 nM against SazCA, and of 6.2–89.1 against SspCA, respectively), with several low nanomolar/subnanomolar inhibitors detected against both of them. As SspCA and SazCA are among the most thermostable and catalytically active CAs, it is of interest to find modulators of their activity for potential biotechnologic applications.  相似文献   

17.
The ultimate goal of this research is to construct a new direct CO2 fixation system using photosystems in living algae. Here, we report light-driven formate production from CO2 by using cyanobacterial photosystem I (PS I). Formate, a chemical hydrogen carrier and important industrial material, can be produced from CO2 by using the reducing power and the catalytic function of formate dehydrogenase (FDH). We created a bacterial FDH mutant that experimentally switched the cofactor specificity from NADH to NADPH, and combined it with an in vitro-reconstituted cyanobacterial light-driven NADPH production system consisting of PS I, ferredoxin (Fd), and ferredoxin-NADP+-reductase (FNR). Consequently, light-dependent formate production under a CO2 atmosphere was successfully achieved. In addition, we introduced the NADPH-dependent FDH mutant into heterocysts of the cyanobacterium Anabaena sp. PCC 7120 and demonstrated an increased formate concentration in the cells. These results provide a new possibility for photo-biological CO2 fixation.  相似文献   

18.
I isolated bacteria from blue cheese in order to find bacterial strains secreting l-methioninase enzyme, and optimized the conditions for the most efficient enzyme secretion. The efficient isolate, identified according to the 16S rRNA gene sequence analysis, was Hafnia alvei belonging to Enterobacteriaceae. I confirmed that the H. alvei strain harbored the methionase gene, mdeA (1194 bp). The environmental (pH, temperature) and nutritional (carbon and nitrogen sources and Mg concentration) factors influencing the l-methioninase production of H. alvei were optimized. The highest yield of l-methioninase enzyme was reached after 48 h of incubation when the acidity of the growing medium was adjusted to pH 7.5 and the temperature was 35 °C. The following concentrations of the supplements increased the l-methioninase yield in the medium: galactose (2.0 g L−1), MgSO4 (0.25 g L−1), l-methionine as an inducer (2.0 g L−1), and l-asparagine as an additional N source (1.5 g L−1). I introduce a bacterial strain of H. alvei that is previously unreported to secrete l-methioninase enzyme and show that a carbon source is a mandatory supplement whereas l-methionine is not a mandatory supplement for l-methioninase enzyme production of H. alvei.  相似文献   

19.
With the aim to develop beneficial tracers for cerebral tumors, we tested two novel 5-iodo-2′-deoxyuridine (IUdR) derivatives, diesterified at the deoxyribose residue. The substances were designed to enhance the uptake into brain tumor tissue and to prolong the availability in the organism. We synthesized carrier added 5-[125I]iodo-3′,5′-di-O-acetyl-2′-deoxyuridine (Ac2[125I]IUdR), 5-[125I]iodo-3′,5′-di-O-pivaloyl-2′-deoxyuridine (Piv2[125I]IUdR) and their respective precursor molecules for the first time. HPLC was used for purification and to determine the specific activities. The iodonucleoside tracer were tested for their stability against human thymidine phosphorylase. DNA integration of each tracer was determined in 2 glioma cell lines (Gl261, CRL2397) and in PC12 cells in vitro. In mice, we measured the relative biodistribution and the tracer uptake in grafted brain tumors. Ac2[125I]IUdR, Piv2[125I]IUdR and [125I]IUdR (control) were prepared with labeling yields of 31–47% and radiochemical purities of >99% (HPLC). Both diesterified iodonucleoside tracers showed a nearly 100% resistance against degradation by thymidine phosphorylase. Ac2[125I]IUdR and Piv2[125I]IUdR were specifically integrated into the DNA of all tested tumor cell lines but to a less extend than the control [125I]IUdR. In mice, 24 h after i.p. injection, brain radioactivity uptakes were in the following order Piv2[125I]IUdR>Ac2[125I]IUdR>[125I]IUdR. For Ac2[125I]IUdR we detected lower amounts of radioactivities in the thyroid and stomach, suggesting a higher stability toward deiodination. In mice bearing unilateral graft-induced brain tumors, the uptake ratios of tumor-bearing to healthy hemisphere were 51, 68 and 6 for [125I]IUdR, Ac2[125I]IUdR and Piv2[125I]IUdR, respectively. Esterifications of both deoxyribosyl hydroxyl groups of the tumor tracer IUdR lead to advantageous properties regarding uptake into brain tumor tissue and metabolic stability.  相似文献   

20.
Due to their efficiency in the hydrolysis of the collagen triple helix, Clostridium histolyticum collagenases are used for isolation of cells from various tissues, including isolation of the human pancreatic islets. However, the instability of clostridial collagenase I (Col G) results in a degraded Col G that has weak collagenolytic activity and an adverse effect on islet isolation and viability. A Förster resonance energy transfer triple-helical peptide substrate (fTHP) has been developed for selective evaluation of bacterial collagenase activity. The fTHP [sequence: Gly-mep-Flp-(Gly-Pro-Hyp)4-Gly-Lys(Mca)-Thr-Gly-Pro-Leu-Gly-Pro-Pro-Gly-Lys(Dnp)-Ser-(Gly-Pro-Hyp)4-NH2] had a melting temperature (Tm) of 36.2 °C and was hydrolyzed efficiently by bacterial collagenase (kcat/KM = 25,000 s−1 M−1) but not by clostripain, trypsin, neutral protease, thermolysin, or elastase. The fTHP bacterial collagenase assay allows for rapid and specific assessment of enzyme activity toward triple helices and, thus, potential application for evaluating the efficiency of cell isolation by collagenases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号