首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell-free extracts of strains representative of the genera Beneckea and Photobacterium catalyzed a P-enol-pyruvate dependent phosphorylation of d-fructose. The resulting product, fructose-1-P, was converted to fructose-1,6-P2 by 1-P-fructokinase. Both activities were inducible, being present in d-fructose-grown cells and reduced or absent in d-gluconate- (or succinate-) grown cells.  相似文献   

2.
1. The 1-P-fructokinase (1-PFK) and 6-P-fructokinase (6-PFK) from Pseudmonas doudoroffii were partially purified by a combination of (NH4)2SO4 fractionation and DEAE-Sephadex column chromatography. The pH optima of these enzymes were 9.0 and 8.5, respectively. 2. When the concentrations of the substrates of the 1-PFK reaction were varied, Michaelis-Menten kinetics were observed. The Kms for D-fructose-1-P (F-1-P) and ATP were 3.03 X 10(-4) M and 3.39 X 10(-4) M, respectively. Variation of MgCl2 at fixed concentrations of F-1-P and ATP resulted in sigmoidal kinetics; about 10 mM MgCl2 was necessary for maximal activity. Activity of 1-PFK was inhibited when the ratio of ATP:Mg++ was higher than 0.5, suggesting that ATP:2Mg++ was the substrate and that free ATP was inhibitory. Although an absolute requirement for K+ or NH4+ could not be demonstrated, these cations stimulated the rate of the reaction. Activity of 1-PFK was not significantly affected by 3 mM AMP, cyclic-AMP, Pi, D-fructose-6-P (F-6-P), ADP, P-enolpyruvate (PEP), pyruvate, citrate, or L-gluamate. 3. Sigmoidal kinetics were observed for 6-PFK when the concentration of F-6-P was increased and the level of ATP was kept constant. Activity of 6-PFK was increased by ADP, inhibited by PEP, and unaffected by 3 mM AMP, cyclic-AMP, Pi, F-1-P, pyruvate, or citrate.  相似文献   

3.
This work presents the isolation and the biochemical characterization of the Arabidopsis thaliana gene AtSgpp. This gene shows homology with the Arabidopsis low molecular weight phosphatases AtGpp1 and AtGpp2 and the yeast counterpart GPP1 and GPP2, which have a high specificity for dl-glycerol-3-phosphate. In addition, it exhibits homology with DOG1 and DOG2 that dephosphorylate 2-deoxy-d-glucose-6-phosphate. Using a comparative genomic approach, we identified the AtSgpp gene as a conceptual translated haloacid dehalogenase-like hydrolase HAD protein. AtSgpp (locus tag At2g38740), encodes a protein with a predicted Mw of 26.7 kDa and a pI of 4.6. Its sequence motifs and expected structure revealed that AtSgpp belongs to the HAD hydrolases subfamily I, with the C1-type cap domain. In the presence of Mg2+ ions, the enzyme has a phosphatase activity over a wide range of phosphosugars substrates (pH optima at 7.0 and K m in the range of 3.6–7.7 mM). AtSgpp promiscuity is preferentially detectable on d-ribose-5-phosphate, 2-deoxy-d-ribose-5-phosphate, 2-deoxy-d-glucose-6-phosphate, d-mannose-6-phosphate, d-fructose-1-phosphate, d-glucose-6-phosphate, dl-glycerol-3-phosphate, and d-fructose-6-phosphate, as substrates. AtSgpp is ubiquitously expressed throughout development in most plant organs, mainly in sepal and guard cell. Interestingly, expression is affected by abiotic and biotic stresses, being the greatest under Pi starvation and cyclopentenone oxylipins induction. Based on both, substrate lax specificity and gene expression, the physiological function of AtSgpp in housekeeping detoxification, modulation of sugar-phosphate balance and Pi homeostasis, is provisionally assigned.  相似文献   

4.
The Arabidopsis thaliana gene AtSgpp (locus tag At2g38740), encodes a protein whose sequence motifs and expected structure reveal that it belongs to the HAD hydrolases subfamily I, with the C1-type cap domain (Caparrós-Martín et al. in Planta 237:943–954, 2013). In the presence of Mg2+ ions, the enzyme has a phosphatase activity over a wide range of phosphosugar substrates. AtSgpp promiscuity is preferentially detectable on d-ribose-5-phosphate, 2-deoxy-d-ribose-5-phosphate, 2-deoxy-d-glucose-6-phosphate, d-mannose-6-phosphate, d-fructose-1-phosphate, d-glucose-6-phosphate, dl-glycerol-3-phosphate, and d-fructose-6-phosphate. Site-directed mutagenesis analysis of the putative signature sequence motif-5 (IAGKH), which defines its specific chemistry, brings to light the active-site residues Ala-69 and His-72. Mutation A69M, changes the pH dependence of AtSgpp catalysis, and mutant protein AtSgpp-H72K was inactive in phosphomonoester dephosphorylation. It was also observed that substitutions I68M and K71R slightly affect the substrate specificity, while the replacement of the entire motif for that of homologous dl-glycerol-3-phosphatase AtGpp (MMGRK) does not switch AtSgpp activity to the specific targeting for dl-glycerol-3-phosphate.  相似文献   

5.
Activation of the human red cell calcium ATPase by calcium pretreatment   总被引:1,自引:0,他引:1  
Some kinetic parameters of the human red cell Ca2+-ATPase were studied on calmodulin-free membrane fragments following preincubation at 37°C. After 30 min treatment with EGTA(1 mm) plus dithioerythritol (1 mm), a V max of about 0.4 μmol Pi/mg × hr and a K s of 0.3 μm Ca2+ were found. When Mg2+ (10 mm) or Ca2+(10 μm) were also added during preincubation, V maxbut not Kwas altered. Ca2+ was more effective than Mg2+, thus increasing V max to about 1.3 μmol Pi/mg × hr. The presence of both Ca2+ and Mg2+ during pretreatment decreasedKto 0.15 μm, while having no apparent effect on V max. Conversely, addition of ATP (2 mm) with either Ca2+ or Ca2+ plus Mg2+increased Vmax without affecting K. Preincubation with Ca2+ for periods longer than 30 min further increased Vmaxand reduced Kto levels as low as found with calmodulin treatment. The Ca2+ activation was not prevented by adding proteinase inhibitors (iodoacetamide, 10 mm; leupeptin, 200 μm; pepstatinA, 100 μm; phenylmethanesulfonyl fluoride, 100 μm). The electrophoretic pattern of membranes preincubated with or without Mg2+, Ca2+ or Ca2+ plus Mg2+ did not differ significantly from each other. Moreover, immunodetection of Ca2+-ATPase by means of polyclonal antibodiesrevealed no mobility change after the various treatments. The above stimulation was not altered by neomycin (200 μm), washing with EGTA (5 mm) or by both incubating and washing with delipidized serum albumin (1 mg/ml), or omitting dithioerythritol from the preincubation medium. On the other hand, the activation elicited by Ca2+ plus ATP in the presence of Mg2+ was reduced 25–30% by acridine orange (100 μm), compound 48/80 (100 μm) or leupeptin (200 μm) but not by dithio-bis-nitrobenzoic acid (1 mm). The fluorescence depolarization of 1,6-diphenyl-and l-(4-trimethylammonium phenyl)-6-phenyl 1,3,5-hexatriene incorporated into membrane fragments was not affected after preincubating under the different conditions. The results show that proteolysis, fatty acid production, an increased phospholipid metabolism or alteration of membrane fluidity are not involved in the Ca2+ effect. Ca2+ preincubation may stimulate the Ca2+-ATPase activity by stabilizing or promoting the E1 conformation.  相似文献   

6.
The d-psicose 3-epimerase (DPE) gene from Ruminococcus sp. was cloned and overexpressed in Escherichia coli. The recombinant protein was purified and characterized. It was optimally active at pH 7.5–8.0 and 60?°C. Activity was not dependent on the presence of metal ions; however, it became more thermostable with added Mn2+. The K m of the enzyme for d-psicose (48?mM) was lower than that for d-tagatose (230?mM), suggesting that d-psicose is the optimum substrate. More importantly, the thermostability of the novel DPE from Ruminococcus is the strongest among all of the d-psicose and d-tagatose 3-epimerases and may be suitable for the industrial production of d-psicose from fructose.  相似文献   

7.
Previous studies proposed the involvement of theN-methyl-D-aspartate (NMDA) type of glutamate receptors in the development of sensitization to the convulsive effect of cocaine (cocaine kindling). The present study was undertaken to determine, first, if cocaine kindling is associated with enhanced sensitivity of the NMDA receptor to the convulsive response ofN-methyl-D,L-aspartate (NMDLA), and second, whether in vivo modulation of nitric oxide synthase (NOS) function regulates the development of cocaine kindling. The following results were observed:
  1. Cocaine-kindled animals were significantly more susceptible to the convulsive effect of the NMDA receptor agonist NMDLA than saline controls;
  2. Pretreatment with the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 100 mg/kg; ip) blocked the development of cocaine kindling;
  3. The protective effect of L-NAME was partially reversed with the coadministration of the NOS substrate,L-arginine (300 mg/kg; ip), but notD-arginine; and
  4. L-Arginine (300 mg/kg; ip), but notD-arginine, amplified the development of cocaine kindling. Taken together, these findings suggest that supersensitivity of the NMDA receptor and activation of NOS may underlie the development of cocaine kindling.
  相似文献   

8.
A recombinant l-fucose isomerase from Caldicellulosiruptor saccharolyticus was purified as a single 68 kDa band with an activity of 76 U mg?1. The molecular mass of the native enzyme was 204 kDa as a trimer. The maximum activity for l-fucose isomerization was at pH 7 and 75°C in the presence of 1 mM Mn2+. Its half-life at 70°C was 6.1 h. For aldose substrates, the enzyme displayed activity in decreasing order for l-fucose, with a k cat of 11,910 min?1 and a K m of 140 mM, d-arabinose, d-altrose, and l-galactose. These aldoses were converted to the ketoses l-fuculose, d-ribulose, d-psicose, and l-tagatose, respectively, with 24, 24, 85, 55% conversion yields after 3 h.  相似文献   

9.
The uptake ofl-andd-aspartate was studied in astrocytes cultured from prefrontal cortex and in granule cells cultured from cerebellum. A high affinity uptake system forl- andd-aspartate was found in both cell types, and the two stereoisomers exhibited essentially the sameK m - andV max -values in bouth astrocytes (l-aspartate:K m 77 μM;V max 11.8 nmol×min?1×mg?1;d-aspartate:K m 83 μM;V max 14.0 nmol×min?1×mg?1) and granule cells (l-aspartate:K m 32 μM;V max 2.8 nmol ×min?1×mg?1;d-aspartate:K m 26 μM;V max 3.0 nmol×min?1×mg?1). To investigate whetherl-glutamate,l-aspartate andd-aspartate use the same uptake system a detailed kenetic analysis was performed. The uptake kinetics of each one of the three amino acids was studied in the presence of the two other amino acids, and no essential differences between the uptake characteristics of the amino acids were found. In addition to the uptake studies the release ofD-aspartate from cerebellar granule cells was investigated and compared withl-glutamate release. A Ca2+-dependent, K+-induced release was found for both amino acids.  相似文献   

10.
N-Acyl-d-amino acid amidohydrolases (d-aminoacylases) are often used as tools for the optical resolution of d-amino acids, which are important products with applications in industries related to medicine and cosmetics. For this study, genes encoding d-aminoacylase were cloned from the genomes of Streptomyces spp. using sequence-based screening. They were expressed by Escherichia coli and Streptomyces lividans. Almost all of the cell-free extracts exhibit hydrolytic activity toward N-acetyl-(Ac-)d-Phe (0.05–6.32 μmol min?1 mg?1) under conditions without CoCl2. Addition of 1 mM CoCl2 enhanced their activity. Among them, the highest activity was observed from cell-free extracts prepared from S. lividans that possess the d-aminoacylase gene of Streptomyces sp. 64E6 (specific activities were, respectively, 7.34 and 9.31 μmol min?1 mg?1 for N-Ac-d-Phe and N-Ac-d-Met hydrolysis). Furthermore, when using glycerol as a carbon source for cultivation, the recombinant enzyme from Streptomyces sp. 64E6 was produced in 4.2-fold greater quantities by S. lividans than when using glucose. d-Aminoacylase from Streptomyces sp. 64E6 showed optimum at pH 8.0–9.0. It was stable at pH 5.5–9.0 up to 30 °C. The enzyme hydrolyzed various N-acetyl-d-amino acids that have hydrophobic side chains. In addition, the activity toward N-chloroacetyl-d-Phe was 2.1-fold higher than that toward N-Ac-d-Phe, indicating that the structure of N-acylated portion of substrate altered the activity.  相似文献   

11.
l-dopa-l-Tyr was synthesized by Fmoc solid-phase peptide synthesis, purified by reversed-phase HPLC and characterized by using 1H, 13C NMR and ESI–MS analyses. The interaction of l-dopa-l-Tyr and l-dopa with ctDNA has been investigated respectively by UV–vis absorption and fluorescence spectroscopy. The results showed that both l-dopa and l-dopa-l-Tyr interacted with ctDNA through intercalative mode and l-dopa-l-Tyr showed a higher affinity for DNA. Meanwhile, compared with the free l-dopa, gel electrophoresis assay also demonstrated that l-dopa-l-Tyr interacted with DNA by intercalation.  相似文献   

12.
Cell-free extracts of d-fructose grown cells of marine species of Alcaligenes as well as Pseudomonas marina contained an activity which catalyzed a P-enolpyruvate-dependent phosphorylation of d-fructose in the 1-position as well as activities of the following enzymes: 1-P-fructokinase, fructose-1,6-P2 aldolase, PPi-dependent 6-P-fructokinase, fructokinase, glucokinase, P-hexose isomerase, glucose-6-P dehydrogenase, 6-P-gluconate dehydrase, and 2-keto-3-deoxy-6-P-gluconate aldolase. The presence of these enzyme activities would allow d-fructose to be degraded by the Embden-Meyerhof pathway and/or the Entner-Doudoroff pathway. In cell-free extracts of d-glucose grown cells, the activity catalyzing a P-enolpyruvate-dependent phosphorylation of d-fructose as well as 1-P-fructokinase activity were reduced or absent while the remaining enzymes were present at levels similar to those found in d-fructose grown cells. Radiolabeling experiments suggested that both d-fructose and d-glucose were utilized primarily via the Entner-Doudoroff pathway. Alteromonas communis, a marine species lacking 1-P-fructokinase and the PPi-dependent 6-P-fructokinase, contained all the enzyme activities necessary for the catabolism of d-fructose and d-glucose by the Entner-Doudoroff pathway; the involvement of this pathway was also consistent with the results of the radiolabeling experiments.Non-Standard Abbreviations EDP Entner-Doudoroff pathway - EMP Embden-Meyerhof pathway - FDP fructose-1,6-P2 - FDPase FDP phosphatase - F-1-P fructose-1-P - F-6-P fructose-6-P - FPTS PEP: d-fructose phosphotransferase system - PPi-6-PFK PPi dependent 6-PFK - G-6-P glucose-6-P - KDPG 2-keto-3-deoxy-6-P-gluconate - PEP P-enolpyruvate - 1-PFK 1-P-fructokinase - 6-PFK 6-P-fructokinase - 6-PGA 6-P-gluconate  相似文献   

13.
The d,d-transpeptidase activity of Penicillin Binding Proteins (PBPs) is essential to maintain cell wall integrity. PBPs catalyze the final step of the peptidoglycan synthesis by forming 4 → 3 cross-links between two peptide stems. Recently, a novel β-lactam resistance mechanism involving l,d-transpeptidases has been identified in Enterococcus faecium and Mycobacterium tuberculosis. In this resistance pathway, the classical 4 → 3 cross-links are replaced by 3 → 3 cross-links, whose formation are catalyzed by the l,d-transpeptidases. To date, only one class of the entire β-lactam family, the carbapenems, is able to inhibit the l,d-transpeptidase activity. Nevertheless, the specificity of this inactivation is still not understood. Hence, the study of this new transpeptidase family is of considerable interest in order to understand the mechanism of the l,d-transpeptidases inhibition by carbapenems. In this context, we present herein the backbone and side-chain 1H, 15N and 13C NMR assignment of the l,d-transpeptidase from Bacillus subtilis (LdtBs) in the apo and in the acylated form with a carbapenem, the imipenem.  相似文献   

14.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

15.
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx K M, but no significant response in 3H-l-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx K M in the presence of sodium, but having negligible effect on 3H-l-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.  相似文献   

16.
The effects of sodium, potassium, sugar inhibitors, and membrane potential on 3H-d-glucose uptake by hepatopancreatic epithelial brush border membrane vesicles (BBMV) of the Atlantic marine shrimp, Litopenaeus setiferus, were investigated. Brush border membrane vesicles were prepared using a MgCl2/EGTA precipitation method and uptake experiments were conducted using a high speed filtration technique. 3H-d-Glucose uptake was stimulated by both sodium and potassium and these transport rates were almost doubled in the presence of an inside-negative-induced membrane potential. Kinetics of 3H-d-glucose influx were hyperbolic functions of both external Na+ or K+, and an induced membrane potential increased influx J max and lowered Km in both salts. 3H-d-Glucose influx versus [glucose] in both Na+ or K+ media also displayed Michaelis–Menten properties that were only slightly affected by induced membrane potential. Phloridzin was a poor inhibitor of 0.5 mM 3H-d-glucose influx, requiring at least 5 mM in NaCl and 10 mM in KCl to significantly reduce hexose transport. Several sugars (d-galactose, α-methyl-d-gluco-pyranoside, unlabeled d-glucose, d-fructose, and d-mannose) were used at 75 mM as potential inhibitors of 0.1 mM 3H-d-glucose influx. Only unlabeled d-glucose, d-fructose, and d-mannose significantly (p < 0.05) reduced labeled glucose transport. An additional experiment using increasing concentrations of d-mannose (0, 10, 25, 75, and 100 mM) showed this hexose to be an effective inhibitor of 0.1 mM 3H-d-glucose uptake at concentrations of 75 mM and higher. As a whole these results suggest that 3H-d-glucose transport by hepatopancreatic BBMV occurs by a carrier system that is able to use both Na+ and K+ as drivers, is enhanced by membrane potential, is relatively refractory to phloridzin, and is only inhibited by itself, d-fructose, and d-mannose. These properties are similar to those exhibited by the mammalian SLC5A9/SGLT4 transporter, suggesting that an invertebrate analogue of this protein may occur in shrimp.  相似文献   

17.
  1. The main pathway of the anaerobic metabolism of l-malate in Saccharomyces bailii is catalyzed by a l-malic enzyme.
  2. The enzyme was purified more than 300-fold. During the purification procedure fumarase and pyruvate decarboxylase were removed completely, and malate dehydrogenase and oxalacetate decarboxylase were removed to a very large extent.
  3. Manganese ions are not required for the reaction of malic enzyme of Saccharomyces bailii, but the activity of the enzyme is increased by manganese.
  4. The reaction of l-malic enzyme proceeds with the coenzymes NAD and (to a lesser extent) NADP.
  5. The K m-values of the malic enzyme of Saccharomyces bailii were 10 mM for l-malate and 0.1 mM for NAD.
  6. A model based on the activity and substrate affinity of malic enzyme, the intracellular concentration of malate and phosphate, and its action on fumarase, is proposed to explain the complete anaerobic degradation of malate in Saccharomyces bailii as compared with the partial decomposition of malate in Saccharomyces cerevisiae.
  相似文献   

18.
γ-Glutamylamine cyclotransferase (gGACT) catalyzes the intramolecular cyclization of a variety of l-γ-glutamylamines producing 5-oxo-l-proline and free amines. Its substrate specificity implicates it in the downstream metabolism of transglutaminase products, and is distinct from that of γ-glutamyl cyclotransferase which acts on l-γ-glutamyl amino acids. To elucidate the mechanism by which gGACT distinguishes between l-γ-glutamylamine and amino acid substrates, the specificity of the rabbit kidney enzyme for the amide region of substrates was probed through the kinetic analysis of a series of l-γ-glutamylamines. The isodipeptide N ?-(l-γ-glutamyl)-l-lysine 1 was used as a reference. The kinetic constants of the l-γ-glutamyl derivative of n-butylamine 7, were nearly identical to those of 1. Introduction of a methyl or carboxylate group on the carbon adjacent to the side-chain amide nitrogen in l-γ-glutamylamine substrates resulted in a dramatic decrease in substrate properties for gGACT thus providing an explanation of why gGACT does not act on l-γ-glutamyl amino acids except for l-γ-glutamylglycine. Placement of substituents on carbons further removed from the side-chain amide nitrogen in l-γ-glutamylamines restored activity for gGACT, and l-γ-glutamylneohexylamine 19 had a higher specificity constant (k cat /K m) than 1. gGACT did not exhibit any stereospecificity in the amide region of l-γ-glutamylamine substrates. In addition, analogues (2630) with heteroatom substitutions for the γ methylene position of the l-γ-glutamyl moiety were examined. Several thiocarbamoyl derivatives of l-cysteine (2830) were excellent substrates for gGACT.  相似文献   

19.
d-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for d-psicose production from d-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a d-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co2+. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using d-psicose as the substrate, the apparent K m, k cat, and catalytic efficiency (k cat/K m) were 27.4 mM, 49 s?1, and 1.78 s?1 mM?1, respectively. Under the optimal conditions, the equilibrium ratio of d-fructose to d-psicose was 69:31. For high production of d-psicose, 216 g/L d-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate d-fructose, indicating that the enzyme was a potential d-psicose producer for industrial production.  相似文献   

20.
The gene of an l-rhamnose isomerase (RhaA) from Bacillus subtilis was cloned to the pET28a(+) and then expressed in the E. coli ER2566. The expressed enzyme was purified with a specific activity of 3.58 U/mg by His-Trap affinity chromatography. The recombinant enzyme existed as a 194 kDa tetramer and the maximal activity was observed at pH 8.0 and 60°C. The RhaA displayed activity for l-rhamnose, l-lyxose, l-mannose, d-allose, d-gulose, d-ribose, and l-talose, among all aldopentoses and aldohexoses and it showed enzyme activity for l-form monosaccharides such as l-rhamnose, l-lyxose, l-mannose, and l-talose. The catalytic efficiency (k cat/K m) of the recombinant enzyme for l-rhamnose, l-lyxose, and l-mannose were 7,460, 1,013, and 258 M/sec. When l-xylulose 100 g/L and l-fructose 100 g/L were used as substrates, the optimum concentrations of RpiB were determined with 6 and 15 U/mL, respectively. The l-lyxose 40 g/L was produced from l-xylulose 100 g/L by the enzyme during 60 min, while l-mannose 25 g/L was produced from l-fructose 100 g/L for 80 min. The results suggest that RhaA from B. subtilis is a potential producer of l-form monosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号